20 research outputs found

    “Capital Structure” Determinants: A Conceptual and Empirical Review

    Get PDF
    Choosing the right kind of financing is considered essential and critical in the world of business finance. It is the combination of debt and equity financing that a company uses to sustain its funding patterns that is referred to as the “capital structure” of a company. For this project, we will examine theoretical and empirical research on capital structure, as well as the primary elements that influence how organisations choose their capital structure. The present study looks at the main competing “capital structure” theories, as well as the assumptions that drive each of them. The examination highlights the factors that impact a company's “capital structure” decision. Factors of “capital structure” determinants discovered via empirical study on “capital structure” determinants so far. Research Methodology: The nature of Present Research study is descriptive based and conceptual, Empirical review paper. The data has been collected from various repute journals such as Elsevier Science direct, articles published in peer-reviewed journals, textbooks etc. The review is based on various research works that were selected through well defined inclusion and exclusion criteria. Results: Many research studies on large organisations have been done using secondary data and regression models, and many of these studies have been conducted on large organisations utilising primary data. It was discovered that the impact of leverage differs by industry, which should be examined further in future study. The present research examines ““capital structure” theories” and factors that impact “capital structure” selection in the financial industry. When it comes to “capital structure” choices, firms have been demonstrated to follow the pecking order theory

    Improved Accuracy by Novel Inception Compared over GoogleNet in Predicting the Performance of Students in Online Education During COVID

    Get PDF
    The goal of this research is to enhance the accuracy of predicting students' performance in online education during the Covid-19 pandemic by comparing the Novel Inception algorithm with the GoogleNet algorithm. Materials and Methods: The current research paper investigates the performance of two distinct algorithms, namely the Novel Inception algorithm and the GoogleNet algorithm, in two separate groups with 20 samples in each group. The statistical significance of the collected data was assessed using SPSS with a G-power value set at 85%. The study also explores the accuracies of these algorithms with varying sample sizes. Result: Inception algorithm provides a higher accuracy of 91.0480% when compared to GoogleNet algorithm with accuracy of 89.8860% in predicting the Performance of Students in online education during covid. With a significance value of p=0.007 (p<0.05) which comparison of Novel Inception algorithm compared over GoogleNet algorithm in preding the Performance of Students in online education with improved Accuracy. The research findings indicate that the performance of students in online education during COVID-19 can be better predicted using the Novel Inception algorithm than the GoogleNet algorithm. The accuracy of the Novel Inception algorithm was observed to be higher as compared to the GoogleNet algorithm

    An environmental sustainability roadmap for partially substituting agricultural waste for sand in cement blocks

    Get PDF
    Agricultural waste can be used in cement block production for a number of reasons, including its environmental, economic, and labor benefits. This study examines the mechanical, durability, and cost-effectiveness characteristics of cement blocks. A cement block made from agriculture waste promotes sustainable construction practices, since waste agriculture is often dumped in landfills and regarded as a waste material. Carbon dioxide (CO2) emissions produced by the construction sector, either from the firing of clay bricks or from the production of cement, contribute significantly to global warming. In many developing countries, air pollution from agricultural activities is primarily accounted for the emissions from agricultural machinery and openly burning agro-waste. Farming is one of the leading causes of water and soil pollution. Hence, adopting agricultural waste into cement production would significantly reduce the environmental impact of concrete structures. The goal of this research is to determine whether agricultural waste products, such as vermiculite, pistachio shells, sugarcane bagasse, and coconut husks, can be used to substitute sand in concrete blocks. The water absorption capacity of waste materials, density, flexural strength, fire resistance, and compressive strength of waste materials as admixtures in concrete were evaluated using experimental tests. In most cases, the concrete blocks made from agricultural waste were strong enough to satisfy ASTM standards. The specimens containing coconut husks and pistachio shells, among others, were found to be fairly strong and durable, even when isolating them from water

    HYPERPHOSPHATEMIA IN END STAGE RENAL DISEASE: PREVALENCE AND PATIENTS CHARACTERISTICS OF MULTIETHNIC POPULATION OF UNITED ARAB EMIRATES

    Get PDF
    Objective: Hyperphosphatemia is significantly associated with increased mortality among end stage renal disease (ESRD) patients on hemodialysis. There is paucity of data on hyperphosphatemia in ESRD patients of the multiethnic population of United Arab Emirates (UAE). The study aimed to investigate the prevalence and characteristics of hyperphosphatemia in ESRD patients of the multiethnic population of UAE undergoing maintenance hemodialysis.Methods: Adults ESRD patients undergoing maintenance hemodialysis for more than six months at the study site were included. Demographic, clinical and biological data of the patients were collected. Patient characteristics were compared as per the serum phosphate level, between patients with or without hyperphosphatemia. Univariate and multivariate logistic regression analyses were carried out to identify the predictors of hyperphosphatemia.Results: Hyperphosphatemia was present in 73.8% of the study population, while 31.3% presented with high calcium-phosphate product. Univariate logistic analysis revealed that hyperphosphatemia was inversely correlated with age, hemoglobin, serum calcium, and hypertensive nephropathy as cause of renal disease, and positively correlated with female gender, expatriate status, body mass index (BMI), higher number of comorbidities, calcium-phosphate product and parathyroid hormone (PTH). Multivariate logistic regression model revealed that only age, BMI, hemoglobin and PTH independently correlated with hyperphosphatemia.Conclusion: We report a high prevalence of hyperphosphatemia in multiethnic study population undergoing maintenance hemodialysis at a secondary care hospital in UAE. In this study population, only age, BMI, hemoglobin and PTH were identified as independent predictors of hyperphosphatemia

    An environmental sustainability roadmap for partially substituting agricultural waste for sand in cement blocks

    Get PDF
    Agricultural waste can be used in cement block production for a number of reasons, including its environmental, economic, and labor benefits. This study examines the mechanical, durability, and cost-effectiveness characteristics of cement blocks. A cement block made from agriculture waste promotes sustainable construction practices, since waste agriculture is often dumped in landfills and regarded as a waste material. Carbon dioxide (CO2) emissions produced by the construction sector, either from the firing of clay bricks or from the production of cement, contribute significantly to global warming. In many developing countries, air pollution from agricultural activities is primarily accounted for the emissions from agricultural machinery and openly burning agro-waste. Farming is one of the leading causes of water and soil pollution. Hence, adopting agricultural waste into cement production would significantly reduce the environmental impact of concrete structures. The goal of this research is to determine whether agricultural waste products, such as vermiculite, pistachio shells, sugarcane bagasse, and coconut husks, can be used to substitute sand in concrete blocks. The water absorption capacity of waste materials, density, flexural strength, fire resistance, and compressive strength of waste materials as admixtures in concrete were evaluated using experimental tests. In most cases, the concrete blocks made from agricultural waste were strong enough to satisfy ASTM standards. The specimens containing coconut husks and pistachio shells, among others, were found to be fairly strong and durable, even when isolating them from water

    Evaluating the potential of geopolymer concrete as a sustainable alternative for thin white-topping pavement

    Get PDF
    Introduction: The construction industry uses a large quantity of natural materials in the production of concrete. Although attempts to incorporate green materials in concrete began years ago, not every building uses such materials today, and roadways, particularly, still rely on unsustainable materials. Methods: Therefore, this study used alternative materials, including fly ash, manufactured sand aggregates, and different molarities of alkaline activators, to incorporate waste byproducts in a geopolymer concrete white-topping pavement layer. Recent developments have led to the emergence of geopolymers as distinct classes of materials. In the 1990s, fly ash-based geopolymers became more popular than other kinds, as they are more efficient compared to Portland cement concrete. Results: Aluminosilicate gel can be obtained by combining fly ash and alkaline solution. A comprehensive literature review of geopolymer concrete was performed in this study. It examines its critical design parameters, including alkaline solutions, curing temperatures, curing methods, workability, and compressive strength under various environmental conditions. This review provides a unique opportunity for researchers to understand how geopolymer concrete performs. Discussion: A range of conditions were investigated to determine how to enhance and use this material in a variety of ways. The fresh characteristics of different mixes were studied using slump and Vee-Bee tests, and the characteristics of the cured concrete mixes were determined using flexural, compressive, and flexural fatigue tests. The results indicated that the use of manufactured sand and fly ash with high-molarity alkaline activators results in a geopolymer concrete with an excellent maximum resistance of 5.1 N/mm2 workability, strength, and fatigue properties, making it suitable for use in roadway pavement

    An environmental sustainability roadmap for partially substituting agricultural waste for sand in cement blocks

    Get PDF
    Agricultural waste can be used in cement block production for a number of reasons, including its environmental, economic, and labor benefits. This study examines the mechanical, durability, and cost-effectiveness characteristics of cement blocks. A cement block made from agriculture waste promotes sustainable construction practices, since waste agriculture is often dumped in landfills and regarded as a waste material. Carbon dioxide (CO2) emissions produced by the construction sector, either from the firing of clay bricks or from the production of cement, contribute significantly to global warming. In many developing countries, air pollution from agricultural activities is primarily accounted for the emissions from agricultural machinery and openly burning agro-waste. Farming is one of the leading causes of water and soil pollution. Hence, adopting agricultural waste into cement production would significantly reduce the environmental impact of concrete structures. The goal of this research is to determine whether agricultural waste products, such as vermiculite, pistachio shells, sugarcane bagasse, and coconut husks, can be used to substitute sand in concrete blocks. The water absorption capacity of waste materials, density, flexural strength, fire resistance, and compressive strength of waste materials as admixtures in concrete were evaluated using experimental tests. In most cases, the concrete blocks made from agricultural waste were strong enough to satisfy ASTM standards. The specimens containing coconut husks and pistachio shells, among others, were found to be fairly strong and durable, even when isolating them from water

    Evaluating The Potential of Geopolymer Concrete as A Sustainable Alternative for Thin White-Topping Pavement

    Get PDF
    Introduction: The construction industry uses a large quantity of natural materials in the production of concrete. Although attempts to incorporate green materials in concrete began years ago, not every building uses such materials today, and roadways, particularly, still rely on unsustainable materials. Methods: Therefore, this study used alternative materials, including fly ash, manufactured sand aggregates, and different molarities of alkaline activators, to incorporate waste byproducts in a geopolymer concrete white-topping pavement layer. Recent developments have led to the emergence of geopolymers as distinct classes of materials. In the 1990s, fly ash-based geopolymers became more popular than other kinds, as they are more efficient compared to Portland cement concrete. Results: Aluminosilicate gel can be obtained by combining fly ash and alkaline solution. A comprehensive literature review of geopolymer concrete was performed in this study. It examines its critical design parameters, including alkaline solutions, curing temperatures, curing methods, workability, and compressive strength under various environmental conditions. This review provides a unique opportunity for researchers to understand how geopolymer concrete performs. Discussion: A range of conditions were investigated to determine how to enhance and use this material in a variety of ways. The fresh characteristics of different mixes were studied using slump and Vee-Bee tests, and the characteristics of the cured concrete mixes were determined using flexural, compressive, and flexural fatigue tests. The results indicated that the use of manufactured sand and fly ash with high-molarity alkaline activators results in a geopolymer concrete with an excellent maximum resistance of 5.1 N/mm2 workability, strength, and fatigue properties, making it suitable for use in roadway pavement

    Clinical pharmacy activities in chronic kidney disease and end-stage renal disease patients: a systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic kidney disease (CKD) and end-stage renal disease (ESRD) represent worldwide health problems with an epidemic extent. Therefore, attention must be given to the optimisation of patient care, as gaps in the care of CKD and ESRD patients are well documented. As part of a multidisciplinary patient care strategy, clinical pharmacy services have led to improvements in patient care. The purpose of this study was to summarise the available evidence regarding the role and impact of clinical pharmacy services for these patient populations.</p> <p>Methods</p> <p>A literature search was conducted using the <it>Medline</it>, <it>Embase </it>and <it>International Pharmaceutical Abstracts </it>databases to identify relevant studies on the impact of clinical pharmacists on CKD and ESRD patients, regarding disease-oriented and patient-oriented outcomes, and clinical pharmacist interventions on drug-related problems.</p> <p>Results</p> <p>Among a total of 21 studies, only four (19%) were controlled trials. The majority of studies were descriptive (67%) and before-after studies (14%). Interventions comprised general clinical pharmacy services with a focus on detecting, resolving and preventing drug-related problems, clinical pharmacy services with a focus on disease management, or clinical pharmacy services with a focus on patient education in order to increase medication knowledge. Anaemia was the most common comorbidity managed by clinical pharmacists, and their involvement led to significant improvement in investigated disease-oriented outcomes, for example, haemoglobin levels. Only four of the studies (including three controlled trials) presented data on patient-oriented outcomes, for example, quality of life and length of hospitalisation. Studies investigating the number and type of clinical pharmacist interventions and physician acceptance rates reported a mean acceptance rate of 79%. The most common reported drug-related problems were incorrect dosing, the need for additional pharmacotherapy, and medical record discrepancies.</p> <p>Conclusions</p> <p>Few high-quality trials addressing the benefit and impact of clinical pharmacy services in CKD and ESRD patients have been published. However, all available studies reported some positive impact resulting from clinical pharmacist involvement, including various investigated outcome measures that could be improved. Additional randomised controlled trials investigating patient-oriented outcomes are needed to further determine the role of clinical pharmacists and the benefits of clinical pharmacy services to CKD and ESRD patients.</p

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore