292 research outputs found

    Architectural support for secure and survivable embedded software

    Get PDF
    Attacks against vulnerable software have become a serious problem for industry and users alike. There have been many techniques proposed to combat these attacks which range from compiler modifications to additional architectural features. Most of these techniques focus on attack detection, while ignoring the problem of how to gracefully recover from such attacks. In this thesis we propose an architectural approach to attack detection and recovery which we call rollback and huddle. In our approach, a lightweight attack-detection module monitors a program\u27s execution as its state is continuously checkpointed. In the case of an attack, the program state is rolled back to a time before the attack occurred and an additional HW/SW module is loaded to gain extra insight into the attack and possibly repair the original vulnerability. Our approach is based on the observation that the vast majority of a program\u27s execution can be trusted. Therefore, we aim to minimize the performance overhead during normal execution. Once an attack has been detected, the system is put into a high alert mode where a larger performance overhead is tolerated to make use of more complex techniques and avoid system down-time. We introduce simple hardware modules that work alongside a standard computer architecture, and aid in attack detection, checkpoint creation, and attack recovery. Our experimental results show that this approach can be achieved with minimal run-time overhead and resource utilization

    SCAVMA Teaching Award Winners

    Get PDF
    The annual SCAVMA Teaching Awards were presented this spring at the annual awards meeting. Two awards were presented, one for basic sciences and one for clinical sciences. Nominees were taken from the student body and were narrowed down to three for each award by a committee from SCAVMA Executive Council. This year the Basic Science Award Nominees were Drs. Don Adams (Veterinary Anatomy), Ron Griffith, and James Roth (both of Microbiology, Immunology, and Preventive Medicine). The Clinical Science Award Nominees were Drs. Eric Davis, Larry Jackson, and James Noxon. Junior and senior students voted on the three nominees for the Clinical Science Award and all students voted on the nominees for the Basic Science Award

    Opinion of the Attorney General

    Get PDF

    Teachers Insurable and Retirement Fund - Veterans

    Get PDF

    Advertising

    Get PDF

    Federal Educational Funds: Distribution

    Get PDF

    Insanity Procedure

    Get PDF

    Enterprise Liability, Public and Private

    Get PDF
    In Sweden, where forests cover more than 60% of the land area, silviculture and the use of forest products by industry and society play crucial roles in the national carbon balance. A scientific challenge is to understand how different forest management and wood use strategies can best contribute to climate change mitigation benefits. This study uses a set of models to analyze the effects of different forest management and wood use strategies in Sweden on carbon dioxide emissions and removals through 2105. If the present Swedish forest use strategy is continued, the long-term climate change mitigation benefit will correspond to more than 60 million tons of avoided or reduced emissions of carbon dioxide annually, compared to a scenario with similar consumption patterns in society but where non-renewable products are used instead of forest-based products. On average about 470 kg of carbon dioxide emissions are avoided for each cubic meter of biomass harvested, after accounting for carbon stock changes, substitution effects and all emissions related to forest management and industrial processes. Due to Sweden’s large export share of forest-based products, the climate change mitigation effect of Swedish forestry is larger abroad than within the country. The study also shows that silvicultural methods to increase forest biomass production can further reduce net carbon dioxide emissions by an additional 40 million tons of per year. Forestry’s contribution to climate change mitigation could be significantly increased if management of the boreal forest were oriented towards increased biomass production and if more wood were used to substitute fossil fuels and energy-intensive materials

    Carbon calculator tracks the climate benefits of managed private forests

    Full text link
    As part of California's strategy to reduce greenhouse gas emissions, private forest landowners are now required to address carbon sequestration as a management goal when submitting timber harvest plans. Using public data on forests and forest products, we developed a calculator that tracks the carbon sequestration benefits related to live trees, wood used for bioenergy and wood going into products. The calculator is adapted for different forest types, forest management techniques and time frames. Based on current best practices used in California, we estimate that harvested and regenerated forests will provide approximately 30% more total carbon sequestration benefits than forests left to grow for an equal time. More than half of the total benefits relate to harvested wood substituting for fossil fuels and fossil fuel–intensive materials such as cement and steel. With relatively efficient management practices, harvesting a ton of wood provides more sequestration benefits than leaving that ton growing in the forest
    • …
    corecore