8 research outputs found

    PAN-INTACT enables direct isolation of lineage-specific nuclei from fibrous tissues.

    No full text
    Recent studies have highlighted the extraordinary cell type diversity that exists within mammalian organs, yet the molecular drivers of such heterogeneity remain elusive. To address this issue, much attention has been focused on profiling the transcriptome and epigenome of individual cell types. However, standard cell type isolation methods based on surface or fluorescent markers remain problematic for cells residing within organs with significant connective tissue. Since the nucleus contains both genomic and transcriptomic information, the isolation of nuclei tagged in specific cell types (INTACT) method provides an attractive solution. Although INTACT has been successfully applied to plants, flies, zebrafish, frogs, and mouse brain and adipose tissue, broad use across mammalian organs remains challenging. Here we describe the PAN-INTACT method, which can be used to isolate cell type specific nuclei from fibrous mouse organs, which are particularly problematic. As a proof-of-concept, we demonstrate successful isolation of cell type-specific nuclei from the mouse heart, which contains substantial connective tissue and harbors multiple cell types, including cardiomyocytes, fibroblasts, endothelial cells, and epicardial cells. Compared to established techniques, PAN-INTACT allows more rapid isolation of cardiac nuclei to facilitate downstream applications. We show cell type-specific isolation of nuclei from the hearts of Nkx2-5Cre/+; R26Sun1-2xsf-GFP-6xmyc/+ mice, which we confirm by expression of lineage markers. Furthermore, we perform Assay for Transposase Accessible Chromatin (ATAC)-Seq to provide high-fidelity chromatin accessibility maps of Nkx2-5+ nuclei. To extend the applicability of PAN-INTACT, we also demonstrate successful isolation of Wt1+ podocytes from adult kidney. Taken together, our data suggest that PAN-INTACT is broadly applicable for profiling the transcriptional and epigenetic landscape of specific cell types. Thus, we envision that our method can be used to systematically probe mechanistic details of cell type-specific functions within individual organs of intact mice

    Hand2 Selectively Reorganizes Chromatin Accessibility to Induce Pacemaker-like Transcriptional Reprogramming

    No full text
    Summary: Gata4, Hand2, Mef2c, and Tbx5 (GHMT) can reprogram transduced fibroblasts into induced pacemaker-like myocytes (iPMs), but the underlying mechanisms remain obscure. Here, we explore the role of Hand2 in iPM formation by using a combination of transcriptome, genome, and biochemical assays. We found many shared transcriptional signatures between iPMs and the endogenous sinoatrial node (SAN), yet key regulatory networks remain missing. We demonstrate that Hand2 augments chromatin accessibility at loci involved in sarcomere organization, electrical coupling, and membrane depolarization. Focusing on an established cardiac Hand2 cistrome, we observe selective reorganization of chromatin accessibility to promote pacemaker-specific gene expression. Moreover, we identify a Hand2 cardiac subtype diversity (CSD) domain through biochemical analysis of the N terminus. By integrating our RNA-seq and ATAC-seq datasets, we highlight desmosome organization as a hallmark feature of iPM formation. Collectively, our results illuminate Hand2-dependent mechanisms that may guide future efforts to rationally improve iPM formation. : Gata4, Hand2, Mef2c, and Tbx5 can reprogram fibroblasts into cardiomyocyte-like cells, including induced pacemakers (iPMs). Fernandez-Perez et al. show that Hand2 coordinates this process by influencing chromatin accessibility and gene expression in fibroblasts undergoing iPM lineage conversion. These insights could eventually inform the production of superior replacement cells. Keywords: gene expression, transcriptome, chromatin accessibility, pacemaker, reprogramming, desmosom

    SHOX2 is a Potent Independent Biomarker to Predict Survival of WHO Grade II–III Diffuse Gliomas

    Get PDF
    Background: Diffuse gliomas, grades II and III, hereafter called lower-grade gliomas (LGG), have variable, difficult to predict clinical courses, resulting in multiple studies to identify prognostic biomarkers. The purpose of this study was to assess expression or methylation of the homeobox family gene SHOX2 as independent markers for LGG survival. Methods: We downloaded publically available glioma datasets for gene expression and methylation. The Cancer Genome Atlas (TCGA) (LGG, n = 516) was used as a training set, and three other expression datasets (n = 308) and three other methylation datasets (n = 320), were used for validation. We performed Kaplan-Meier survival curves and univariate and multivariate Cox regression model analyses. Findings: SHOX2 expression and gene body methylation varied among LGG patients and highly significantly predicted poor overall survival. While they were tightly correlated, SHOX2 expression appeared more potent as a prognostic marker and was used for most further studies. The SHOX2 prognostic roles were maintained after analyses by histology subtypes or tumor grade. We found that the combination of SHOX2 expression and IDH genotype status identified a subset of LGG patients with IDH wild-type (IDHwt) and low SHOX2 expression with considerably favorable survival. We further investigated the combination of SHOX2 with other known clinically relevant markers of LGG (TERT expression, 1p/19q chromosome co-deletion, MGMT methylation, ATRX mutation and NES expression). When combined with SHOX2 expression, we identified subsets of LGG patients with significantly favorable survival outcomes, especially in the subgroup with worse prognosis for each individual marker. Finally, multivariate analysis demonstrated that SHOX2 was a potent independent survival marker. Interpretation: We have identified that SHOX2 expression or methylation are potent independent prognostic indicators for predicting LGG patient survival, and have potential to identify an important subset of LGG patients with IDHwt status with significantly better overall survival. The combination of IDH or other relevant markers with SHOX2 identified LGG subsets with significantly different survival outcomes, and further understanding of these subsets may benefit therapeutic target identification and therapy selections for glioma patients

    Targeting TGFβR2‐mutant tumors exposes vulnerabilities to stromal TGFβ blockade in pancreatic cancer

    No full text
    Abstract TGFβ is important during pancreatic ductal adenocarcinoma (PDA) progression. Canonical TGFβ signaling suppresses epithelial pancreatic cancer cell proliferation; as a result, inhibiting TGFβ has not been successful in PDA. In contrast, we demonstrate that inhibition of stromal TGFβR2 reduces IL‐6 production from cancer‐associated fibroblasts, resulting in a reduction of STAT3 activation in tumor cells and reversion of the immunosuppressive landscape. Up to 7% of human PDA have tumor cell‐specific deficiency in canonical TGFβ signaling via loss of TGFβR2. We demonstrate that in PDA that harbors epithelial loss of TGFβR2, inhibition of TGFβ signaling is selective for stromal cells and results in a therapeutic benefit. Our study highlights the potential benefit of TGFβ blockade in PDA and the importance of stratifying PDA patients who might benefit from such therapy

    Chemical intervention of influenza virus mRNA nuclear export.

    No full text
    Influenza A viruses are human pathogens with limited therapeutic options. Therefore, it is crucial to devise strategies for the identification of new classes of antiviral medications. The influenza A virus genome is constituted of 8 RNA segments. Two of these viral RNAs are transcribed into mRNAs that are alternatively spliced. The M1 mRNA encodes the M1 protein but is also alternatively spliced to yield the M2 mRNA during infection. M1 to M2 mRNA splicing occurs at nuclear speckles, and M1 and M2 mRNAs are exported to the cytoplasm for translation. M1 and M2 proteins are critical for viral trafficking, assembly, and budding. Here we show that gene knockout of the cellular protein NS1-BP, a constituent of the M mRNA speckle-export pathway and a binding partner of the virulence factor NS1 protein, inhibits M mRNA nuclear export without altering bulk cellular mRNA export, providing an avenue to preferentially target influenza virus. We performed a high-content, image-based chemical screen using single-molecule RNA-FISH to label viral M mRNAs followed by multistep quantitative approaches to assess cellular mRNA and cell toxicity. We identified inhibitors of viral mRNA biogenesis and nuclear export that exhibited no significant activity towards bulk cellular mRNA at non-cytotoxic concentrations. Among the hits is a small molecule that preferentially inhibits nuclear export of a subset of viral and cellular mRNAs without altering bulk cellular mRNA export. These findings underscore specific nuclear export requirements for viral mRNAs and phenocopy down-regulation of the mRNA export factor UAP56. This RNA export inhibitor impaired replication of diverse influenza A virus strains at non-toxic concentrations. Thus, this screening strategy yielded compounds that alone or in combination may serve as leads to new ways of treating influenza virus infection and are novel tools for studying viral RNA trafficking in the nucleus

    Endothelial ERα promotes glucose tolerance by enhancing endothelial insulin transport to skeletal muscle

    No full text
    Abstract The estrogen receptor (ER) designated ERα has actions in many cell and tissue types that impact glucose homeostasis. It is unknown if these include mechanisms in endothelial cells, which have the potential to influence relative obesity, and processes in adipose tissue and skeletal muscle that impact glucose control. Here we show that independent of impact on events in adipose tissue, endothelial ERα promotes glucose tolerance by enhancing endothelial insulin transport to skeletal muscle. Endothelial ERα-deficient male mice are glucose intolerant and insulin resistant, and in females the antidiabetogenic actions of estradiol (E2) are absent. The glucose dysregulation is due to impaired skeletal muscle glucose disposal that results from attenuated muscle insulin delivery. Endothelial ERα activation stimulates insulin transcytosis by skeletal muscle microvascular endothelial cells. Mechanistically this involves nuclear ERα-dependent upregulation of vesicular trafficking regulator sorting nexin 5 (SNX5) expression, and PI3 kinase activation that drives plasma membrane recruitment of SNX5. Thus, coupled nuclear and non-nuclear actions of ERα promote endothelial insulin transport to skeletal muscle to foster normal glucose homeostasis

    Validation of SCT methylation as a hallmark biomarker for lung cancers

    No full text
    Introduction: The human secretin gene (SCT) encodes secretin, a hormone with limited tissue distribution. Analysis of the 450k methylation array data in The Cancer Genome Atlas (TCGA) indicated that the SCT promoter region is differentially hypermethylated in lung cancer. Our purpose was to validate SCT methylation as a potential biomarker for lung cancer. Methods: We analyzed data from TCGA and developed and applied SCT-specific bisulfite DNA sequencing and quantitative methylation-specific polymerase chain reaction assays. Results: The analyses of TCGA 450K data for 801 samples showed that SCT hypermethylation has an area under the curve (AUC) value greater than 0.98 that can be used to distinguish lung adenocarcinomas or squamous cell carcinomas from nonmalignant lung tissue. Bisulfite sequencing of lung cancer cell lines and normal blood cells allowed us to confirm that SCT methylation is highly discriminative. By applying a quantitative methylation-specific polymerase chain reaction assay, we found that SCT hypermethylation is frequently detected in all major subtypes of malignant non- small cell lung cancer (AUC = 0.92, n = 108) and small cell lung cancer (AUC = 0.93, n = 40) but is less frequent in lung carcinoids (AUC = 0.54, n = 20). SCT hypermethylation appeared in samples of lung carcinoma in situ during multistage pathogenesis and increased in invasive samples. Further analyses of TCGA 450k data showed that SCT hypermethylation is highly discriminative in most other types of malignant tumors but less frequent in low-grade malignant tumors. The only normal tissue with a high level of methylation was the placenta. Conclusions: Our findings demonstrated that SCT methylation is a highly discriminative biomarker for lung and other malignant tumors, is less frequent in low-grade malignant tumors (including lung carcinoids), and appears at the carcinoma in situ stage
    corecore