90 research outputs found

    Elliptic Flow and Dissipation in Heavy-Ion Collisions at E_{lab} = (1--160)A GeV

    Full text link
    Elliptic flow in heavy-ion collisions at incident energies Elab≃E_{lab}\simeq (1--160)A GeV is analyzed within the model of 3-fluid dynamics (3FD). We show that a simple correction factor, taking into account dissipative affects, allows us to adjust the 3FD results to experimental data. This single-parameter fit results in a good reproduction of the elliptic flow as a function of the incident energy, centrality of the collision and rapidity. The experimental scaling of pion eccentricity-scaled elliptic flow versus charged-hadron-multiplicity density per unit transverse area turns out to be also reasonably described. Proceeding from values of the Knudsen number, deduced from this fit, we estimate the upper limit the shear viscosity-to-entropy ratio as η/s∼1−2\eta/s \sim 1-2 at the SPS incident energies. This value is of the order of minimal η/s\eta/s observed in water and liquid nitrogen.Comment: 10 pages, 7 figures, version accepted by Phys. Rev.

    Longitudinal fluid dynamics for ultrarelativistic heavy-ion collisions

    Get PDF
    We develop a 1+1 dimensional hydrodynamical model for central heavy-ion collisions at ultrarelativistic energies. Deviations from Bjorken's scaling are taken into account by implementing finite-size profiles for the initial energy density. The calculated rapidity distributions of pions, kaons and antiprotons in central Au+Au collisions at the c.m. energy 200 AGeV are compared with experimental data of the BRAHMS Collaboration. The sensitivity of the results to the choice of the equation of state, the parameters of initial state and the freeze-out conditions is investigated. Experimental constraints on the total energy of produced particles are used to reduce the number of model parameters. The best fits of experimental data are obtained for soft equations of state and Gaussian-like initial profiles of the energy density. It is found that initial energy densities required for fitting experimental data decrease with increasing critical temperature of the phase transition.Comment: 22 pages, 8 figures; 4 figures and 12 references adde

    Possibility of cold nuclear compression in antiproton-nucleus collisions

    Full text link
    We study the dynamical response of the oxygen-16 nucleus to an incident antiproton using the Giessen Boltzmann-Uehling-Uhlenbeck microscopic transport model with relativistic mean fields. A special emphasis is put on the possibility of a dynamical compression of the nucleus induced by the moving antiproton. Realistic antibaryon coupling constants to the mean meson fields are chosen in accordance with empirical data. Our calculations show that an antiproton embedded in the nuclear interior with momentum less than the nucleon Fermi momentum may create a locally compressed zone in the nucleus with a maximum density of about twice the nuclear saturation density. To evaluate the probability of the nuclear compression in high-energy antiproton-nucleus collisions, we adopt a two-stage scheme. This scheme takes into account the antiproton deceleration due to the cascade of antiproton-nucleon rescatterings inside the nucleus (first stage) as well as the nuclear compression by the slow antiproton before its annihilation (second stage). With our standard model parameters, the fraction of antiproton annihilation events in the compressed zone is about 10−510^{-5} for pˉ16\bar p ^{16}O collisions at plab=3−10p_{\rm lab}=3-10 GeV/c. Finally, possible experimental triggers aimed at selecting such events are discussed.Comment: 40 pages, 15 figures, new Sect. V on the in-medium modifications of annihilation, modified conclusions, added references, version accepted in Phys. Rev.

    Hydrodynamic modeling of deconfinement phase transition in nuclear collisions

    Full text link
    The (3+1)-dimensional ideal hydrodynamics is used to simulate collisions of gold nuclei with bombarding energies from 1 to 160 GeV per nucleon. The initial state is represented by two cold Lorentz-boosted nuclei. Two equations of state: with and without the deconfinement phase transition are used. We have investigated dynamical trajectories of compressed baryon-rich matter as functions of various thermodynamical variables. The parameters of collective flow and hadronic spectra are calculated. It is shown that presence of the deconfinement phase transition leads to increase of the elliptic flow and to flattening of proton rapidity distributions.Comment: 11 pages, 6 figure
    • …
    corecore