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Abstract

We develop a 1+1 dimensional hydrodynamical model for central heavy–ion colli-
sions at ultrarelativistic energies. Deviations from Bjorken’s scaling are taken into
account by implementing finite–size profiles for the initial energy density. The cal-
culated rapidity distributions of pions, kaons and antiprotons in central Au+Au col-
lisions at

√
sNN = 200 GeV are compared with experimental data of the BRAHMS

Collaboration. The sensitivity of the results to the choice of the equation of state,
the parameters of initial state and the freeze–out conditions is investigated. The best
fit of experimental data is obtained for a soft equation of state and Gaussian–like
initial profiles of the energy density.
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High–energy heavy–ion collisions provide a unique tool for studying properties
of hot and dense strongly–interacting matter in the laboratory. The theoretical
description of such collisions is often done within the framework of a hydrody-
namic approach. This approach opens the possibility to study the sensitivity
of collision dynamics and secondary particle distributions to the equation of
state (EOS) of the produced matter. The two most famous realizations of
this approach, which differ by the initial conditions, have been proposed by
Landau [1] (full stopping) and Bjorken [2] (partial transparency). In recent
decades many versions of the hydrodynamic model were developed ranging
from simplified 1+1 [3,4,5,6] and 2+1 dimensional models [6,7,8,9,10,11] of
the Landau or Bjorken type to more sophisticated 3+1 dimensional models
[12,13,14,15,16,17]. One should also mention the multi–fluid models [18,19,20,21,22,23,24]
which consider the whole collision process including the nuclear interpenetra-
tion stage. Recent theoretical investigations show that fluid–dynamical models
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give a very good description of many observables at the SPS and RHIC bom-
barding energies (see e.g. Ref. [25]).

The 2+1 dimensional hydrodynamical models have been successfully applied
[7,8,9,10,11] to describe the pT distributions of mesons and their elliptic flow at
midrapidity. These models assume a boost–invariant expansion [2] of matter in
the longitudinal (beam) direction and, therefore, cannot explain experimental
data in a broad rapidity region, where strong deviations from the scaling
regime have been observed. More realistic 3+1 dimensional fluid–dynamical
simulations have been already performed for heavy–ion collisions at SPS and
RHIC energies. But as a rule, the authors of these models do not study the
sensitivity of the results to the choice of initial and final (freeze–out) stages.
On the other hand, it is not clear at present, which initial conditions, Landau–
like [1] or Bjorken–like [2], are more appropriate for ultrarelativistic collisions.

Our main goal in this paper is to see how well the fluid–dynamical approach
describes the RHIC data on π, K, p distributions over a broad rapidity interval,
reported recently by the BRAHMS Collaboration [26,27]. Within our approach
we explicitly impose a constraint on the total energy of the produced particles
which follows from these data.

Below we study the evolution of highly excited, and possibly deconfined,
strongly–interacting matter produced in ultrarelativistic heavy–ion collisions.
It is assumed that after a certain thermalization stage this evolution can be de-
scribed by the ideal relativistic hydrodynamics. The energy–momentum tensor
is written in a standard form 1

T µν = (ǫ + P )UµUν − P gµν , (1)

where ǫ, P and Uµ are the rest–frame energy density, pressure and the collec-
tive 4–velocity of the fluid.

We consider central collisions of equal nuclei disregarding the effects of trans-
verse collective expansion. It is convenient to parametrize Uµ in terms of the
longitudinal flow rapidity Y as Uµ = (cosh Y, 0, sinh Y )µ. All calculations are
performed using the light–cone variables [2], namely, the proper time τ and
the space–time rapidity η , defined as

τ =
√

t2 − z2, η = tanh−1

(

z

t

)

=
1

2
ln

t + z

t − z
. (2)

In these coordinates, the equations of relativistic hydrodynamics, ∂νT
µν = 0,

for an ideal baryon–free fluid take the following form [28]

1 Units with ~ = c = 1 are used throughout the paper.
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(

τ
∂

∂τ
+ tanh(Y − η)

∂

∂η

)

ǫ + (ǫ + P )

(

tanh(Y − η)τ
∂

∂τ
+

∂

∂η

)

Y = 0 , (3)

(ǫ + P )

(

τ
∂

∂τ
+ tanh(Y − η)

∂

∂η

)

Y +

(

tanh(Y − η)τ
∂

∂τ
+

∂

∂η

)

P = 0 . (4)

To solve Eqs. (3)–(4), one needs to specify the EOS, P = P (ǫ), and the initial
profiles ǫ(τ0, η) and Y (τ0, η) at a time τ = τ0 when the fluid may be considered
as thermodynamically equilibrated.

Following Ref. [15], we choose the initial conditions for a finite-size fluid, gen-
eralizing the Bjorken scaling conditions:

Y (τ0, η) = η, ǫ(τ0, η) = ǫ0 exp

[

−(|η| − η0)
2

2σ2
Θ(|η| − η0)

]

, (5)

where Θ(x) ≡ (1 + sgnx)/2 . The particular choice η0 = 0 corresponds to the
pure Gaussian profile of the energy density. At small σ such a profile can be
similar to the Landau initial condition 2 . On the other hand, when σ or η0

tends to infinity, one gets the limiting case of the Bjorken scaling solution.
Below we adopt the value τ0 = 1 fm/c.

The deconfinement phase transition is implemented through a bag–like EOS
in the parametrization suggested in Ref. [11]. This EOS consists of three parts,
denoted below by indices H, M and Q corresponding, respectively, to the
hadronic, ”mixed” and quark–gluon phases. In the case of equilibrated baryon–
free matter the pressure P , energy density ǫ and entropy density s may be
regarded as functions of the temperature only. The hadronic phase consists of
pions, kaons, meson resonances and baryon–antibaryon pairs. It corresponds
to the domain of low energy densities, ǫ < ǫH , and temperatures, T < TH .

The sound velocity, cs =
√

dP/dǫ, is assumed to be constant (cs = cH) in this
phase:

P = c2
Hǫ , T = TH

(

ǫ

ǫH

)

c2
H

1 + c2
H (ǫ < ǫH) . (6)

The mixed phase corresponds to intermediate energy densities, from ǫH up
to ǫQ. The following parametrization is used for this region:

P = c2
Mǫ − (1 + c2

M)BM , T = TH

(

ǫ − BM

ǫH − BM

)

c2
M

1 + c2
M (ǫH < ǫ < ǫQ).(7)

2 Within the Landau model [1] σ ∝ γ−1 and ǫ0 ∝ γ2 where γ is the c.m. Lorentz–
factor of colliding nuclei.
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Table 1
Parameters of EOS with the deconfinement phase transition.

ǫH (GeV/fm3) ǫQ (GeV/fm3) c2
H c2

M c2
Q TH (MeV) TQ (MeV) BM (MeV/fm3) BQ (MeV/fm3)

0.45 1.65 0.15 0.02 1/3 165 169 −57.4 344

Here BM is the bag constant, determined from the condition of continuity
of P (ǫ) at ǫ = ǫH . Due to the small sound velocity cM (see Table 1), both
pressure and temperature increase only weakly with ǫ in the mixed phase re-
gion. The third, quark–gluon plasma region of the EOS corresponds to ǫ > ǫQ.
The expressions for P (ǫ) and T (ǫ) in this region can be obtained from Eq. (7)
by replacing H, M by indices Q. The corresponding formulae for the entropy
density are obtained from the thermodynamic relation s = (ǫ + P )/T . Our
parameters ǫH , ǫQ, c2

H , c2
M , c2

Q, TH are close to those used in Refs. [7,11]. The
parameters BM , BQ, TQ are found from the continuity conditions for P and T .
Unless stated otherwise, this EOS is used in the calculations presented in this
paper. To study the sensitivity to the EOS, we have performed also calcula-
tions for several purely hadronic EOSs. In this case we extend Eq. (6) to all
energy densities, taking the same ǫH , TH as in Table 1, but choosing different
c2
H from 1/10 to 1/3.

Using the equations of fluid dynamics one can show that the total energy and
entropy of the fluid can be expressed as

E =
∫

dσµT
µ0 = S⊥τ0

+∞
∫

−∞

dη [ǫ cosh Y cosh (Y − η) + P sinh Y sinh (Y − η)] ,(8)

S =
∫

dσµsUµ = S⊥τ0

+∞
∫

−∞

dη s cosh (Y − η) , (9)

where S⊥ is the transverse area of the fluid. The r.h.s. of Eqs. (8)–(9) give
the values of the energy and entropy at τ = τ0 . Equations (8) and (9) can
be considered as sum rules for the total energy and entropy of the produced
particles. Below we use Eq. (8) to constrain possible values of the parame-
ters characterizing the initial state. This is possible since the total energy of
produced particles is known from experimental data [26].

The numerical solution of Eqs. (3)–(4) is obtained by using the relativistic
version [29] of the flux–corrected transport algorithm [30]. We have checked
that our numerical code conserves the total energy E and entropy S at any
hypersurface σµ lying above the initial hyperbola τ = τ0 , on the level better
than 1% even for τ & 200 fm/c.

The momentum spectra of secondary hadrons are calculated by applying the
standard Cooper–Frye formula [31], assuming that particles are emitted with-
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out further rescatterings from elements dσµ of the freeze–out hypersurface
τ = τF (η). Then, the invariant momentum distribution for each particle
species is given by the expression

E
d3N

d3p
=

d3N

dyd2pT

=
g

(2π)3

∫

dσµpµ
{

exp
(

pνU
ν
F − µF

TF

)

± 1
}−1

, (10)

where pµ is the 4–momentum of the particle, y and pT are, respectively, its
longitudinal rapidity and transverse momentum, g denotes the particle’s sta-
tistical weight. The subscript F in the collective 4–velocity Uµ , temperature T
and chemical potential µ implies that these quantities are taken on the freeze–
out hypersurface 3 . The plus or minus sign in the r.h.s. of Eq. (10) correspond
to fermions or bosons, respectively.

For a cylindrical fireball of radius R expanding only in the longitudinal direc-
tion, one can write S⊥ = πR2 and dσµ = πR2 (dz, 0, dt)µ . Using Eq. (2) one
arrives at the following relation

dσµpµ = πR2mT {τF (η) cosh(y − η) − τ ′

F (η) sinh(y − η)} dη . (11)

Here mT is the particle’s transverse mass defined as mT =
√

m2 + p
2
T , where m

is the corresponding vacuum mass. In the same approximation one can also
write the expression

pνU
ν
F = mT cosh(y − YF (η)) , (12)

where YF (η) = Y (τF (η), η) . An explicit expression for particle spectra at
freeze–out is obtained after substituting (11)–(12) into Eq. (10) and integrat-
ing over η from −∞ to +∞ . Note that Bjorken’s model [2] corresponds to
YF = η and τF , TF independent of η. As can be seen from Eqs. (10)–(12), the
rapidity distributions of all particles should be flat in this case.

We adopt the freeze–out condition, assuming that a given fluid element decou-
ples from the rest of the fluid when its temperature decreases below a certain
value TF . For finite–size initial conditions, T (τ0, η) → 0 at |η| → ∞, so that
the fluid elements at large |η| have temperatures below TF from the very
beginning, i.e. at τ = τ0. We treat these elements as decoupled instanta-
neously (τF = τ0) and use in Eq. (10) the initial values of Y and T instead of
YF and TF . Direct calculation shows, that such elements contribute only little
to the tails of the rapidity distributions. The value of TF is considered as an

3 Below we assume that the chemical and thermal freeze–out hypersurfaces coin-
cide. In this case µF = 0 for baryon–free matter.
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adjustable model parameter which is found from the best fit to experimental
data.

Below we show the results for rapidity distributions of π– and K–mesons as
well as antiprotons produced in central Au+Au collisions at

√
sNN = 200GeV.

In all calculations we use the fireball radius R = 6.5 fm. The results are
compared with data of the BRAHMS Collaboration [26,27] for most central
(0%–5%) collisions.

In calculating these distributions one should take into account not only di-
rectly produced particles but also feeding from resonance decays. Below we
assume that the freeze–out temperatures for directly produced particles and
corresponding resonances are the same. One of the most important contribu-
tions to the pion yield is given by ρ(770)–mesons. The spectrum of π+–mesons
originating from these decays is calculated by using the expression [32]

Eπ
d3Nρ→π+

d3p
=

1

3π

∞
∫

2mπ

dmR w(mR)
√

m2
R − 4m2

π

∫

d3pR
d3NR

d3pR

δ
(

ppR

mR

− mR

2

)

, (13)

where the first integration corresponds to averaging over the mass spectrum
of ρ–mesons, pR and p are, respectively, the 4–momenta of the ρ–resonance
and of the secondary pion. The normalization coefficient in Eq. (13) takes
into account that the number of π+–mesons produced in ρ–decays equals 2/3
of the total multiplicity of ρ–mesons. The freeze–out momentum spectrum
of ρ–mesons, d3NR/d3pR , is calculated using Eqs. (10)–(12) with m = mR,
g = gρ = 9. We use the parametrization of the ρ–meson mass distribution,
w(mR) , suggested in Ref. [32].

The feeding of the pion yields from other meson and baryon resonances (R = η,
ω, K∗, ∆ . . .) is obtained in the zero–width approximation, assuming that the
contribution of the resonance R is proportional to its equilibrium density
nR (TF ), multiplied by a factor dR, the average number of π+ mesons pro-
duced in this resonance decay (dρ = 2/3, dη = 0.65 . . .). The details of nR and
dR calculations can be found in Ref. [33]. We have checked for several reso-
nances with two–body decays (e.g. for R = K∗) that such a procedure yields
a very good accuracy. As a result, we get the following formula for the total
resonance contribution to the spectrum of π+ mesons:

∑

R

d3NR→π+

dyd2pT

= α
d3Nρ→π+

dyd2pT

, (14)

where the enhancement factor α is defined as follows

α =
∑

R

dR

dρ

nR(TF )

nρ(TF )
. (15)
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We include meson (baryon and antibaryon) resonances with masses up to 1.3
(1.65) GeV and widths Γ < 150 MeV. The statistical weights, masses and
branching ratios of these resonances are taken from Ref. [34] . The factor α
decreases gradually with decreasing freeze–out temperature: α = 3.0, 2.4, 2.3
for TF = 165, 130, 100MeV, respectively.

When calculating the kaon spectra we explicitly include feeding from decays of
K∗(892) (in the zero–width approximation). Higher resonances (R = φ, K1 . . .)
are taken into account by applying the same procedure as for pions. In this
case the enhancement factor changes from 1.5 to 1.2 when TF goes from 165
to 100 MeV.

In order to reduce the freedom in choosing the initial conditions, we use as
an additional constraint the value of the total energy loss, ∆E = 73 ± 6
GeV per nucleon, deduced from the measurements of the net baryon rapidity
distribution in the most central Au+Au collisions [26]. This gives an estimate
of the total energy of secondaries in the considered reaction:

E = Npart ∆E ≃ 26.1 TeV , (16)

where Npart ≃ 357 is the mean number of participating nucleons. Substituting
the parametrization (5) into Eq. (8) and taking the value of E from Eq. (16),
one gets the relation between the parameters ǫ0, η0, σ .

We have considered different profiles of the initial energy density, ranging
from the Gaussian–like (η0 = 0) to the table–like (σ = 0). We found that it is
not possible to reproduce the BRAHMS data on the pion and kaon rapidity
spectra in Au+Au collisions by choosing either too small (ǫ0 . 5GeV/fm3)
or too large (ǫ0 & 15GeV/fm3) initial energy densities. In these regions the
pion and kaon yields can not be reproduced with any TF . It is also found that
the quality of fits is noticeably reduced for initial energy density profiles with
sharp edges, corresponding to σ < 1 . As follows from the constraint (16), such
profiles should have a very large ǫ0 or a significant plateau −η0 < η < η0. This
would lead to more flat rapidity distributions of pions and kaons as compared
to the BRAHMS data.

A few parameter sets which lead to good fits are listed in Table 2. In all
these sets we use the EOS with the phase transition. The sensitivity of the
fits to the choice of freeze–out temperature is demonstrated in Figs. 1 and 2
for the parameter set C. The other two sets from Table 2 give very similar ra-
pidity distributions for both pions and kaons. In these calculations we choose
various ǫ0 and σ and determine η0 from the total energy constraint (16). The
best fit of the pion spectrum is achieved for freeze–out temperatures around

7



Table 2
Parameters of the initial states which give the best fits of the pion, kaon and an-
tiproton rapidity spectra observed in central Au+Au collisions at

√
sNN = 200 GeV.

T0 denotes the maximum temperature at τ = τ0 . E1 and E3 are total energies of
produced particles within the rapidity intervals |y| < 1 and |y| < 3, respectively.

set ǫ0 (GeV/fm3) σ η0 T0 (MeV) E1 (TeV) E3 (TeV) E/S (GeV)

A 8 1.30 1.14 263 1.49 9.55 0.86

B 9 1.50 0.62 271 1.54 9.59 0.86

C 10 1.74 0 279 1.53 9.25 0.89

TF ≃ 130 MeV 4 . On the other hand, the kaon spectrum can be well repro-
duced assuming that kaons decouple at the very beginning of the hadronic
stage, i.e. at TF ≃ 165MeV. The contribution of resonance decays turns out
to be rather significant, especially in the central rapidity region, where it
amounts to about 35% (45%) of the total pion (kaon) yield. It is interest-
ing that the initial states A–C have approximately the same total entropy
S ≃ 3 · 104. As one can see from the last column of Table 2, the corresponding
E/S–ratios fall into a narrow interval 0.86 − 0.89GeV.

-8 -6 -4 -2 0 2 4 6 8

y

0

100

200

300

400

dN
/d

y

TF=140 MeV
res. decay (130 MeV)
TF=130 MeV
TF=120 MeV BRAHMS data:

+

--

Fig. 1. Rapidity distribution of π+–mesons in central Au+Au collisions at√
sNN = 200 GeV. Shown are results corresponding to the initial conditions (5)

with the parameters ǫ0 = 10 GeV/fm3, η0 = 0, σ = 1.74. The solid, dashed and
dashed–dotted curves correspond to different values of the freeze–out tempera-
ture TF . The dotted line shows contribution of resonance decays in the case
TF = 130 MeV. Experimental data are taken from Ref. [27].

4 We did not try to achieve a perfect fit of BRAHMS data, bearing in mind that
their systematic errors are quite big, about 15% in the rapidity region |y| > 1.3 [27].
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Fig. 2. Same as Fig. 1, but for K+ rapidity distributions.

As one can see from Fig. 1, the model predicts larger yields of secondary pions
for smaller freeze–out temperatures. A much weaker sensitivity to TF is found
for kaons (see Fig. 2). This difference can be explained by the large difference
between the pion and the kaon masses. Indeed, in the case of direct pions a
good approximation at TF > 100MeV is to replace the transverse mass mT in
Eqs. (10)–(12) by the pion transverse momentum pT . Neglecting the second
term in the r.h.s. of Eq. (11), one can show that the rapidity distribution of
pions at y = 0 is proportional to ξ = τF cosh η T 3

F / cosh3 YF integrated over all
η . For a rough estimate, one can use the Bjorken relations [2] YF = η, sF τF =
s0τ0 , where sF is the entropy density at T = TF . Using Eq. (6) one gets

τF ∝ s−1
F ∝ T

−1/c2
H

F and therefore, ξ ∝ T
3−1/c2

H

F . This shows that the pion yield
grows with decreasing TF at c2

H < 1/3 . Qualitatively one can say that at
low enough cH the increase of the spatial volume at freeze–out compensates
for the decrease of the pion occupation numbers at smaller TF . This effect is
somewhat reduced because of decreasing resonance contributions at smaller
temperatures. It is obvious that for kaons this effect should be much weaker
due to the presence of the activation exponent exp (−mK/TF ) . In fact the
detailed calculation for the same initial states as in Fig. 2 shows that the kaon
yield changes nonmonotonically: it slightly increases when temperature goes
from 165 to 140 MeV, but then starts to decrease at lower TF .

In order to study the sensitivity of the results to the EOS, we have per-
formed calculations using the same initial conditions as before, but applying
the hadronic EOS (6) for all stages of the reaction, including the high density
phase. Our analysis shows that for soft hadronic EOS with c2

H . 0.2 it is
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possible to reproduce the observed pion and kaon data with approximately
the same quality of the fits as in the calculations with the quark–gluon phase
transition. Furthermore, the corresponding freeze–out temperatures do not
change significantly. However, we could not achieve satisfactory fits for the
”hard” hadronic EOS with c2

H > 1/3 . These EOS lead to too wide rapidity
distributions for both pions and kaons. The reason is that the higher pressure
gives a stronger push to the matter in forward and backward directions. From
these findings we conclude that the pion and kaon rapidity distributions are
consistent with a rather soft EOS at high energy densities.

-8 -6 -4 -2 0 2 4 6 8

y

0

5

10

15

20

25

dN
/d

y

TF=140 MeV
TF=150 MeV
res. decay (165 MeV)
TF=165 MeV

BRAHMS data

Fig. 3. Same as Fig. 1, but for antiproton rapidity distributions. All results are
obtained assuming µF = 0. Experimental data are taken from Ref. [26].

It turned out that with the parameter sets from Table 2 can also reproduce
reasonably well the antiproton rapidity spectra measured by the BRAHMS
Collaboration [26]. Figure 3 shows the antiproton rapidity distributions, cal-
culated for the parameter set C. In this case we explicitly take into account
the contribution of the ∆(1232) → πp decays, ignoring the width of ∆–isobar.
Contributions of higher antibaryon resonances are taken into account in a sim-
ilar way as for pions and kaons. The resonance contribution reaches about 55%
at TF = 165MeV. One should consider these results as an upper bound of the
antiproton yield. A more realistic model should include the effects of nonzero
baryon chemical potentials which will certainly reduce the antibaryon yield.
The thermal model analysis of RHIC data, performed in Ref. [35], gives rather
low values for the baryon chemical potentials, µF ∼ 30MeV, at midrapidity.
This will suppress the antiproton yield by about 20%.

We have calculated additionally the rapidity distribution of the total energy
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0 1 2 3 4 5
0

40

80

120

(f
m

/c
) T=120 MeV

T=130 MeV
T=150 MeV
T=165 MeV
T=169 MeV
T=279 MeV

Fig. 4. Isotherms in the η − τ plane calculated for the parameter set C. Only
forward hemisphere is shown. Different curves correspond to different values of the
freeze–out temperature TF . Shaded region indicates the mixed phase. The dot near
the origin corresponds to maximum temperature at the initial state.

of secondary particles, dE/dy , in order to check the energy balance in the
considered reaction. In this calculation we take into account not only direct
pions and kaons (charged and neutral), but also heavier mesons and BB pairs
(the same set of resonances as in the calculation of pion and kaon spectra).
The contribution of heavy mesons and BB pairs was found in the zero–width
approximation for the temperature TF = 165MeV. By integrating dE/dy, we
have determined E1 and E3, the total energies of secondaries within the ra-
pidity intervals |y| < 1 and |y| < 3, respectively. The BRAHMS Collaboration
estimated E1,3 from the rapidity distributions of charged pions, kaons, pro-
tons and antiprotons in most central Au+Au collisions at

√
sNN = 200GeV.

The values E1 ≃ 1.5 TeV, E3 ≃ 9 TeV have been reported in Ref. [36]. From
Table 2 one can see that these values are well reproduced by the model.

Based on the above analysis we conclude that within the hydrodynamical
model the BRAHMS data can be well described with the parameters of the
initial state (τ0 = 1 fm/c):

ǫ0 ≃ 9 ± 1 GeV/fm3, σ ≃ 1.5 ± 0.3, η0 . 1. (17)

These profiles are intermediate between the Landau and Bjorken limits. It is
worth noting that the observed pion rapidity distribution can be well approx-
imated by the Gaussian with the width σexp ≃ 2.3 [27]. On the other hand,
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the pure Landau model gives for c2
s = 0.15 a much smaller width σLan ≃ 1.38 .

The dynamical evolution of matter as predicted by the present model is il-
lustrated in Fig. 4 where the matter isotherms are shown in the η − τ plane.
One can clearly see that the initial stage of the evolution, when matter is in
the quark–gluon phase, last only for a very short time, of about 5 fm/c. The
region of the phase transition is crossed in less than 10 fm/c. This clearly
shows that the slowing down of expansion associated with the ”soft point” of
the EOS plays no role, when the initial state lies much higher than the phase
transition region. In this situation the system spends the longest time in the
hadronic phase. The freeze-out at TF = 130MeV requires an expansion time
of about 60 fm/c at η = 0. This is certainly a very long time which is seem-
ingly in contradiction with experimental findings. Indeed, the interferometric
measurements [37] show much shorter times of hadron emission, of the order
of 10 fm/c. This discrepancy can not be removed by considering other EOS or
initial conditions. Some reduction of the freeze–out times can be achieved by
including the effects of 3D expansion and chemical nonequilibrium [15]. But,
probably, a more promising solution would be an explosive decomposition of
the quark–gluon plasma, proposed in Ref. [38]. This may happen at very early
times, right after crossing the critical temperature line, when the plasma pres-
sure becomes very small or negative. We shall consider this possibility in a
forthcoming publication.

In conclusion, we have generalized Bjorken’s scaling hydrodynamics for finite–
size profiles of energy density in pseudorapidity space. The hydrodynamical
equations were solved numerically in τ−η coordinates starting from the initial
time τ0 = 1 fm/c until the freeze–out stage. The sensitivity of the final particle
distributions to the initial conditions, the freeze–out temperature and the
EOS has been investigated. A comparison of π, K, p rapidity spectra with the
BRAHMS data for central Au+Au collisions at

√
sNN = 200GeV has been

made. Best agreement with these data is obtained for initial states with a
nearly Gaussian profile and maximum energy densities of about 10 GeV/fm3

at τ = 1 fm/c. The only unsatisfactory aspect of these calculations is the
prediction of very long freeze–out times, ∼ 50 fm/c for pions.

Finally, we would like to comment on two points. First, it is worth noting
that the above–mentioned 2+1 dimensional models [7,8,9,10,11], which assume
Bjorken scaling in the beam direction, are apparently not very accurate even
for the slice around η = 0. Indeed, in contrast to the Bjorken model, our
calculations for finite size profiles show that the quantity s(τ, η)τ does not
stay constant during the expansion, but it drops by about 15% for |η| < 1 at
large times. Therefore, only full 3D models can provide a realistic description.

Second, one can start the hydrodynamical evolution from an earlier time, i.e.
assuming smaller τ0 . In this case one should choose accordingly higher initial
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energy densities. But τ0 cannot be taken too small, since at very early times
the energy is most likely stored in strong chromofields [39]. The quark–gluon
plasma is produced as a result of the decay of these fields. Estimates show
that the characteristic decay times are in the range 0.3 − 1.0 fm/c. At earlier
times the system will contain both fields as well as produced partons, and the
evolution equations are more complicated, see e.g. Ref. [40].
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