The (3+1)-dimensional ideal hydrodynamics is used to simulate collisions of
gold nuclei with bombarding energies from 1 to 160 GeV per nucleon. The initial
state is represented by two cold Lorentz-boosted nuclei. Two equations of
state: with and without the deconfinement phase transition are used. We have
investigated dynamical trajectories of compressed baryon-rich matter as
functions of various thermodynamical variables. The parameters of collective
flow and hadronic spectra are calculated. It is shown that presence of the
deconfinement phase transition leads to increase of the elliptic flow and to
flattening of proton rapidity distributions.Comment: 11 pages, 6 figure