1,407 research outputs found

    Superconductivity in Ru substituted BaFe2-xRuxAs2

    Get PDF
    The occurrence of bulk superconductivity at ~22 K is reported in polycrystalline samples of BaFe2-xRuxAs2 for nominal Ru content in the range of x=0.75 to 1.125. A systematic suppression of the spin density wave transition temperature (TSDW) precedes the appearance of superconductivity in the system. A phase diagram is proposed based on the measured TSDW and superconducting transition temperature (TC) variations as a function of Ru composition. Band structure calculations, indicate introduction of electron carriers in the system upon Ru substitutiom. The calculated magnetic moment on Fe shows a minimum at x=1.0, suggesting that the suppression of the magnetic moment is associated with the emergence of superconductivity. Results of low temperature and high field Mossbauer measurements are presented. These indicate weakening of magnetic interaction with Ru substitutionComment: 20 pages 10 figure

    Anisotropic Local Stress and Particle Hopping in a Deeply Supercooled Liquid

    Get PDF
    The origin of the microscopic motions that lead to stress relaxation in deeply supercooled liquid remains unclear. We show that in such a liquid the stress relaxation is locally anisotropic which can serve as the driving force for the hopping of the system on its free energy surface. However, not all hopping are equally effective in relaxing the local stress, suggesting that diffusion can decouple from viscosity even at local level. On the other hand, orientational relaxation is found to be always coupled to stress relaxation.Comment: 4 pages, 3 figure

    Energy landscape of a Lennard-Jones liquid: Statistics of stationary points

    Full text link
    Molecular dynamics simulations are used to generate an ensemble of saddles of the potential energy of a Lennard-Jones liquid. Classifying all extrema by their potential energy u and number of unstable directions k, a well defined relation k(u) is revealed. The degree of instability of typical stationary points vanishes at a threshold potential energy, which lies above the energy of the lowest glassy minima of the system. The energies of the inherent states, as obtained by the Stillinger-Weber method, approach the threshold energy at a temperature close to the mode-coupling transition temperature Tc.Comment: 4 RevTeX pages, 6 eps figures. Revised versio

    Blue luminescence of Au nanoclusters embedded in silica matrix

    Full text link
    Photoluminescence study using the 325 nm He-Cd excitation is reported for the Au nanoclusters embedded in SiO2 matrix. Au clusters are grown by ion beam mixing with 100 KeV Ar+ irradiation on Au [40 nm]/SiO2 at various fluences and subsequent annealing at high temperature. The blue bands above ~3 eV match closely with reported values for colloidal Au nanoclusters and supported Au nanoislands. Radiative recombination of sp electrons above Fermi level to occupied d-band holes are assigned for observed luminescence peaks. Peaks at 3.1 eV and 3.4 eV are correlated to energy gaps at the X- and L-symmetry points, respectively, with possible involvement of relaxation mechanism. The blue shift of peak positions at 3.4 eV with decreasing cluster size is reported to be due to the compressive strain in small clusters. A first principle calculation based on density functional theory using the full potential linear augmented plane wave plus local orbitals (FP-LAPW+LO) formalism with generalized gradient approximation (GGA) for the exchange correlation energy is used to estimate the band gaps at the X- and L-symmetry points by calculating the band structures and joint density of states (JDOS) for different strain values in order to explain the blueshift of ~0.1 eV with decreasing cluster size around L-symmetry point.Comment: 13 pages, 7 Figures Only in PDF format; To be published in J. of Chem. Phys. (Tentative issue of publication 8th December 2004

    Inherent-Structure Dynamics and Diffusion in Liquids

    Full text link
    The self-diffusion constant D is expressed in terms of transitions among the local minima of the potential (inherent structure, IS) and their correlations. The formulae are evaluated and tested against simulation in the supercooled, unit-density Lennard-Jones liquid. The approximation of uncorrelated IS-transition (IST) vectors, D_{0}, greatly exceeds D in the upper temperature range, but merges with simulation at reduced T ~ 0.50. Since uncorrelated IST are associated with a hopping mechanism, the condition D ~ D_{0} provides a new way to identify the crossover to hopping. The results suggest that theories of diffusion in deeply supercooled liquids may be based on weakly correlated IST.Comment: submitted to PR

    Thermodynamic and structural aspects of the potential energy surface of simulated water

    Full text link
    Relations between the thermodynamics and dynamics of supercooled liquids approaching a glass transition have been proposed over many years. The potential energy surface of model liquids has been increasingly studied since it provides a connection between the configurational component of the partition function on one hand, and the system dynamics on the other. This connection is most obvious at low temperatures, where the motion of the system can be partitioned into vibrations within a basin of attraction and infrequent inter-basin transitions. In this work, we present a description of the potential energy surface properties of supercooled liquid water. The dynamics of this model has been studied in great details in the last years. Specifically, we locate the minima sampled by the liquid by ``quenches'' from equilibrium configurations generated via molecular dynamics simulations. We calculate the temperature and density dependence of the basin energy, degeneracy, and shape. The temperature dependence of the energy of the minima is qualitatively similar to simple liquids, but has anomalous density dependence. The unusual density dependence is also reflected in the configurational entropy, the thermodynamic measure of degeneracy. Finally, we study the structure of simulated water at the minima, which provides insight on the progressive tetrahedral ordering of the liquid on cooling

    Effect of Minimal lengths on Electron Magnetism

    Full text link
    We study the magnetic properties of electron in a constant magnetic field and confined by a isotropic two dimensional harmonic oscillator on a space where the coordinates and momenta operators obey generalized commutation relations leading to the appearance of a minimal length. Using the momentum space representation we determine exactly the energy eigenvalues and eigenfunctions. We prove that the usual degeneracy of Landau levels is removed by the presence of the minimal length in the limits of weak and strong magnetic field.The thermodynamical properties of the system, at high temperature, are also investigated showing a new magnetic behavior in terms of the minimal length.Comment: 14 pages, 1 figur

    Potential Energy Landscape and Long Time Dynamics in a Simple Model Glass

    Full text link
    We analyze the properties of a Lennard-Jones system at the level of the potential energy landscape. After an exhaustive investigation of the topological features of the landscape of the systems, obtained studying small size sample, we describe the dynamics of the systems in the multi-dimensional configurational space by a simple model. This consider the configurational space as a connected network of minima where the dynamics proceeds by jumps described by an appropriate master equation. Using this model we are able to reproduce the long time dynamics and the low temperature regime. We investigate both the equilibrium regime and the off-equilibrium one, finding those typical glassy behavior usually observed in the experiments such as: {\it i)} stretched exponential relaxation, {\it ii)} temperature-dependent stretching parameter, {\it iii)} breakdown of the Stokes-Einstein relation, and {\it iv)} appearance of a critical temperature below which one observes deviation from the fluctuation-dissipation relation as consequence of the lack of equilibrium in the system.Comment: 11 pages (Latex), 9 ps figure
    corecore