50 research outputs found

    Transcriptional Profiling of Peripheral Blood Mononuclear Cells in Pancreatic Cancer Patients Identifies Novel Genes with Potential Diagnostic Utility

    Get PDF
    Background: It is well known that many malignancies, including pancreatic cancer (PC), possess the ability to evade the immune system by indirectly downregulating the mononuclear cell machinery necessary to launch an effective immune response. This knowledge, in conjunction with the fact that the trancriptome of peripheral blood mononuclear cells has been shown to be altered in the context of many diseases, including renal cell carcinoma, lead us to study if any such alteration in gene expression exists in PC as it may have diagnostic utility. Methods and Findings: PBMC samples from 26 PC patients and 33 matched healthy controls were analyzed by whole genome cDNA microarray. Three hundred eighty-three genes were found to be significantly different between PC and healthy controls, with 65 having at least a 1.5 fold change in expression. Pathway analysis revealed that many of these genes fell into pathways responsible for hematopoietic differentiation, cytokine signaling, and natural killer (NK) cell and CD8+ T-cell cytotoxic response. Unsupervised hierarchical clustering analysis identified an eight-gene predictor set, consisting of SSBP2, Ube2b-rs1, CA5B, F5, TBC1D8, ANXA3, ARG1, and ADAMTS20, that could distinguish PC patients from healthy controls with an accuracy of 79% in a blinded subset of samples from treatment naïve patients, giving a sensitivity of 83% and a specificity of 75%. Conclusions: In summary, we report the first in-depth comparison of global gene expression profiles of PBMCs between PC patients and healthy controls. We have also identified a gene predictor set that can potentially be developed further for use in diagnostic algorithms in PC. Future directions of this research should include analysis of PBMC expression profiles in patients with chronic pancreatitis as well as increasing the number of early-stage patients to assess the utility of PBMCs in the early diagnosis of PC. © 2011 Baine et al

    MUC16-mediated activation of mTOR and c-Myc reprograms pancreatic cancer metabolism.

    Get PDF
    MUC16, a transmembrane mucin, facilitates pancreatic adenocarcinoma progression and metastasis. In the current studies, we observed that MUC16 knockdown pancreatic cancer cells exhibit reduced glucose uptake and lactate secretion along with reduced migration and invasion potential, which can be restored by supplementing the culture media with lactate, an end product of aerobic glycolysis. MUC16 knockdown leads to inhibition of mTOR activity and reduced expression of its downstream target c-MYC, a key player in cellular growth, proliferation and metabolism. Ectopic expression of c-MYC in MUC16 knockdown pancreatic cancer cells restores the altered cellular physiology. Our LC-MS/MS based metabolomics studies indicate global metabolic alterations in MUC16 knockdown pancreatic cancer cells, as compared to the controls. Specifically, glycolytic and nucleotide metabolite pools were significantly decreased. We observed similar metabolic alterations that correlated with MUC16 expression in primary tumor tissue specimens from human pancreatic adenocarcinoma cancer patients. Overall, our results demonstrate that MUC16 plays an important role in metabolic reprogramming of pancreatic cancer cells by increasing glycolysis and enhancing motility and invasiveness

    Late Positive Potential ERP Responses to Social and Nonsocial Stimuli in Youth with Autism Spectrum Disorder

    Get PDF
    We examined the late positive potential (LPP) event related potential in response to social and nonsocial stimuli from 9-19 years old youth with (n = 35) and without (n = 34) ASD. Social stimuli were faces with positive expressions and nonsocial stimuli were related to common restricted interests in ASD (e.g., electronics, vehicles, etc.). The ASD group demonstrated relatively smaller LPP amplitude to social stimuli and relatively larger LPP amplitude to nonsocial stimuli. There were no group differences in subjective ratings of images, and there were no significant correlations between LPP amplitude and ASD symptom severity within the ASD group. LPP results suggest blunted motivational responses to social stimuli and heightened motivational responses to nonsocial stimuli in youth with ASD

    PCCR: Pancreatic Cancer Collaborative Registry

    Get PDF
    The Pancreatic Cancer Collaborative Registry (PCCR) is a multi-institutional web-based system aimed to collect a variety of data on pancreatic cancer patients and high-risk subjects in a standard and efficient way. The PCCR was initiated by a group of experts in medical oncology, gastroenterology, genetics, pathology, epidemiology, nutrition, and computer science with the goal of facilitating rapid and uniform collection of critical information and biological samples to be used in developing diagnostic, prevention and treatment strategies against pancreatic cancer. The PCCR is a multi-tier web application that utilizes Java/JSP technology and has Oracle 10 g database as a back-end. The PCCR uses a “confederation model” that encourages participation of any interested center, irrespective of its size or location. The PCCR utilizes a standardized approach to data collection and reporting, and uses extensive validation procedures to prevent entering erroneous data. The PCCR controlled vocabulary is harmonized with the NCI Thesaurus (NCIt) or Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT). The PCCR questionnaire has accommodated standards accepted in cancer research and healthcare. Currently, seven cancer centers in the USA, as well as one center in Italy are participating in the PCCR. At present, the PCCR database contains data on more than 2,700 subjects (PC patients and individuals at high risk of getting this disease). The PCCR has been certified by the NCI Center for Biomedical Informatics and Information Technology as a cancer Biomedical Informatics Grid (caBIG®) Bronze Compatible product. The PCCR provides a foundation for collaborative PC research. It has all the necessary prerequisites for subsequent evolution of the developed infrastructure from simply gathering PC-related data into a biomedical computing platform vital for successful PC studies, care and treatment. Studies utilizing data collected in the PCCR may engender new approaches to disease prognosis, risk factor assessment, and therapeutic interventions

    clusterMaker: a multi-algorithm clustering plugin for Cytoscape

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the post-genomic era, the rapid increase in high-throughput data calls for computational tools capable of integrating data of diverse types and facilitating recognition of biologically meaningful patterns within them. For example, protein-protein interaction data sets have been clustered to identify stable complexes, but scientists lack easily accessible tools to facilitate combined analyses of multiple data sets from different types of experiments. Here we present <it>clusterMaker</it>, a Cytoscape plugin that implements several clustering algorithms and provides network, dendrogram, and heat map views of the results. The Cytoscape network is linked to all of the other views, so that a selection in one is immediately reflected in the others. <it>clusterMaker </it>is the first Cytoscape plugin to implement such a wide variety of clustering algorithms and visualizations, including the only implementations of hierarchical clustering, dendrogram plus heat map visualization (tree view), k-means, k-medoid, SCPS, AutoSOME, and native (Java) MCL.</p> <p>Results</p> <p>Results are presented in the form of three scenarios of use: analysis of protein expression data using a recently published mouse interactome and a mouse microarray data set of nearly one hundred diverse cell/tissue types; the identification of protein complexes in the yeast <it>Saccharomyces cerevisiae</it>; and the cluster analysis of the vicinal oxygen chelate (VOC) enzyme superfamily. For scenario one, we explore functionally enriched mouse interactomes specific to particular cellular phenotypes and apply fuzzy clustering. For scenario two, we explore the prefoldin complex in detail using both physical and genetic interaction clusters. For scenario three, we explore the possible annotation of a protein as a methylmalonyl-CoA epimerase within the VOC superfamily. Cytoscape session files for all three scenarios are provided in the Additional Files section.</p> <p>Conclusions</p> <p>The Cytoscape plugin <it>clusterMaker </it>provides a number of clustering algorithms and visualizations that can be used independently or in combination for analysis and visualization of biological data sets, and for confirming or generating hypotheses about biological function. Several of these visualizations and algorithms are only available to Cytoscape users through the <it>clusterMaker </it>plugin. <it>clusterMaker </it>is available via the Cytoscape plugin manager.</p

    Definitive characterization of CA 19-9 in resectable pancreatic cancer using a reference set of serum and plasma specimens

    Get PDF
    The validation of candidate biomarkers often is hampered by the lack of a reliable means of assessing and comparing performance. We present here a reference set of serum and plasma samples to facilitate the validation of biomarkers for resectable pancreatic cancer. The reference set includes a large cohort of stage I-II pancreatic cancer patients, recruited from 5 different institutions, and relevant control groups. We characterized the performance of the current best serological biomarker for pancreatic cancer, CA 19-9, using plasma samples from the reference set to provide a benchmark for future biomarker studies and to further our knowledge of CA 19-9 in early-stage pancreatic cancer and the control groups. CA 19-9 distinguished pancreatic cancers from the healthy and chronic pancreatitis groups with an average sensitivity and specificity of 70-74%, similar to previous studies using all stages of pancreatic cancer. Chronic pancreatitis patients did not show CA 19-9 elevations, but patients with benign biliary obstruction had elevations nearly as high as the cancer patients. We gained additional information about the biomarker by comparing two distinct assays. The two CA 9-9 assays agreed well in overall performance but diverged in measurements of individual samples, potentially due to subtle differences in antibody specificity as revealed by glycan array analysis. Thus, the reference set promises be a valuable resource for biomarker validation and comparison, and the CA 19-9 data presented here will be useful for benchmarking and for exploring relationships to CA 19-9
    corecore