596 research outputs found
Catalogue of lunar craters cross sections. I - Craters with peaks Research report no. 16
Lunar craters with centrally located peaks - tables and profile graph
Two-body correlations and the superfluid fraction for nonuniform systems
We extend the one-body phase function upper bound on the superfluid fraction
in a periodic solid (a spatially ordered supersolid) to include two-body phase
correlations. The one-body current density is no longer proportional to the
gradient of the one-body phase times the one-body density, but rather it
depends also on two-body correlation functions. The equations that
simultaneously determine the one-body and two-body phase functions require a
knowledge of one-, two-, and three-body correlation functions. The approach can
also be extended to disordered solids. Fluids, with two-body densities and
two-body phase functions that are translationally invariant, cannot take
advantage of this additional degree of freedom to lower their energy.Comment: 13 page
Continuous Neel to Bloch Transition as Thickness Increases: Statics and Dynamics
We analyze the properties of Neel and Bloch domain walls as a function of
film thickness h, for systems where, in addition to exchange, the dipole-dipole
interaction must be included. The Neel to Bloch phase transition is found to be
a second order transition at hc, mediated by a single unstable mode that
corresponds to oscillatory motion of the domain wall center. A uniform
out-of-plane rf-field couples strongly to this critical mode only in the Neel
phase. An analytical Landau theory shows that the critical mode frequency
varies as the square root of (hc - h) just below the transition, as found
numerically.Comment: 4 pages, 4 figure
Superflow in Solid 4He
Kim and Chan have recently observed Non-Classical Rotational Inertia (NCRI)
for solid He in Vycor glass, gold film, and bulk. Their low value of
the superfluid fraction, , is consistent with what
is known of the atomic delocalization in this quantum solid. By including a
lattice mass density distinct from the normal fluid density
, we argue that , and we
develop a model for the normal fluid density with contributions from
longitudinal phonons and ``defectons'' (which dominate). The Bose-Einstein
Condensation (BEC) and macroscopic phase inferred from NCRI implies quantum
vortex lines and quantum vortex rings, which may explain the unusually low
critical velocity and certain hysteretic phenomena.Comment: 4 page pdf, 1 figur
Slow, Steady-State Transport with "Loading" and Bulk Reactions: the Mixed Ionic Conductor LaCuO
We consider slow, steady transport for the normal state of the superconductor
LaCuO in a one-dimensional geometry, with surface fluxes
sufficiently general to permit oxygen to be driven into the sample (``loaded'')
either by electrochemical means or by high oxygen partial pressure. We include
the bulk reaction OO, where neutral atoms () go into ions
() and holes (). For slow, steady transport, the transport equations
simplify because the bulk reaction rate density and the bulk loading rates
then are uniform in space and time. All three fluxes must be
specified at each surface, which for a uniform current density corresponds
to five independent fluxes. These fluxes generate two types of static modes at
each surface and a bulk response with a voltage profile that varies
quadratically in space, characterized by and the total oxygen flux
(neutral plus ion) at each surface. One type of surface mode is associated with
electrical screening; the other type is associated both with diffusion and
drift, and with chemical reaction (the {\it diffusion-reaction mode}). The
diffusion-reaction mode is accompanied by changes in the chemical potentials
, and by reactions and fluxes, but it neither carries current (J=0) nor
loads the system chemically (). Generation of the diffusion-reaction
mode may explain the phenomenon of ``turbulence in the voltage'' often observed
near the electrodes of other mixed ionic electronic conductors (MIECs).Comment: 11 pages, 1 figur
Universal Thermal Radiation Drag on Neutral Objects
We compute the force on a small neutral polarizable object moving at velocity
relative to a photon gas equilibrated at a temperature We find a
drag force linear in . Its physical basis is identical to that in
recent formulations of the dissipative component of the Casimir force. We
estimate the strength of this universal Casimir drag force for different
dielectric response functions and comment on its relevance in various contexts.Comment: 7 pages, 2 figure
Double Exchange in a Magnetically Frustrated System
This work examines the magnetic order and spin dynamics of a double-exchange
model with competing ferromagnetic and antiferromagnetic Heisenberg
interactions between the local moments. The Heisenberg interactions are
periodically arranged in a Villain configuration in two dimensions with
nearest-neighbor, ferromagnetic coupling and antiferromagnetic coupling
. This model is solved at zero temperature by performing a
expansion in the rotated reference frame of each local moment.
When exceeds a critical value, the ground state is a magnetically
frustrated, canted antiferromagnet. With increasing hopping energy or
magnetic field , the local moments become aligned and the ferromagnetic
phase is stabilized above critical values of or . In the canted phase, a
charge-density wave forms because the electrons prefer to sit on lines of sites
that are coupled ferromagnetically. Due to a change in the topology of the
Fermi surface from closed to open, phase separation occurs in a narrow range of
parameters in the canted phase. In zero field, the long-wavelength spin waves
are isotropic in the region of phase separation. Whereas the average spin-wave
stiffness in the canted phase increases with or , it exhibits a more
complicated dependence on field. This work strongly suggests that the jump in
the spin-wave stiffness observed in PrCaMnO with at a field of 3 T is caused by the delocalization of the electrons rather
than by the alignment of the antiferromagnetic regions.Comment: 28 pages, 12 figure
Spin Accumulation at Ferromagnet/Non-magnetic Material Interfaces
Many proposed and realized spintronic devices involve spin injection and
accumulation at an interface between a ferromagnet and a non-magnetic material.
We examine the electric field, voltage profile, charge distribution, spin
fluxes, and spin accumulation at such an interface. We include the effects of
both screening and spin scattering. We also include both the spin-dependent
chemical potentials {\mu}_{\uparrow,\downarrow} and the effective magnetic
field H* that is zero in equilibrium. For a Co/Cu interface, we find that the
spin accumulation in the copper is an order of magnitude larger when both
chemical potential and effective magnetic field are included. We also show that
screening contributes to the spin accumulation in the ferromagnet; this
contribution can be significant.Comment: 11 pages, 4 figures, 2 table
Thermal phase diagrams of columnar liquid crystals
In order to understand the possible sequence of transitions from the
disordered columnar phase to the helical phase in hexa(hexylthio)triphenylene
(HHTT), we study a three-dimensional planar model with octupolar interactions
inscribed on a triangular lattice of columns. We obtain thermal phase diagrams
using a mean-field approximation and Monte Carlo simulations. These two
approaches give similar results, namely, in the quasi one-dimensional regime,
as the temperature is lowered, the columns order with a linear polarization,
whereas helical phases develop at lower temperatures. The helicity patterns of
the helical phases are determined by the exact nature of the frustration in the
system, itself related to the octupolar nature of the molecules.Comment: 12 pages, 9 figures, ReVTe
- …