10 research outputs found

    CFD Investigation into Influences of a Transversely and Periodically Deforming Microchannel on Shear Stress Behavior in a Gut-on-a-chip Device

    Get PDF
    Organ-on-a-chip allows dynamic microenvironment of the actual organ to be simulated in vitro. In this study, the CFD simulation is used to investigate the behaviors of fluid flow and shear stress due to the effect of a transversely deforming membrane caused by the cyclic deformation of the microchannel sidewalls in a gut-on-a-chip device. The result reveals that the shear stress varies linearly along the length of the microchannel. The average shear stress per cycle is approximately three times greater than that of the stationary microchannel. The amplitude and frequency of the cyclic deformation also significantly affect the flow and shear stress behaviors. The highly dynamic shear stress in the gut-on-a-chip device could be one of the major factors that makes this kind of device more viable than the traditional static cell culture

    Shape and surface properties of titanate nanomaterials influence differential cellular uptake behavior and biological responses in THP-1 cells

    No full text
    We investigated cellular uptake behavior and biological responses of spherical and fibrous titanate nanomaterials in human monocyte THP-1 cells. Two titanate nanofibers (TiNFs), namely TF-1 and TF-2, were synthesized from anatase TiO2 nanoparticles (TNPs) via hydrothermal treatment. The synthesized TiNFs and TNPs were thoroughly characterized for their size, crystallinity, surface area and surface pH. TF-1 (∼2 µm in length) was amorphous with an acidic surface, while TF-2 (∼7 µm in length) was brookite with a basic surface. The results demonstrated that none of these titanate nanomaterials resulted in significant cytotoxicity, even at the highest doses tested (50 µg/ml), consistent with an absence of ROS generation and lack of change of mitochondrial membrane potential. While no cytotoxic effect was found in the titanate nanomaterials, TF-2 tended to decrease the proliferation of THP-1 cells. Furthermore, TF-2 resulted in an inflammatory cytokine response, as evidenced by dramatic induction of IL-8 and TNF-α release in TF2 but not TF-1 nor TNPs. These results suggest that shape of titanate nanomaterials plays an important role in cellular internalization, while surface pH may play a prominent role in inflammatory response in THP-1 cells

    Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles

    No full text
    <p>Silver nanoparticles (AgNPs) are widely used in industry, consumer products, and medical appliances due to their efficient antimicrobial properties. However, information on environmental toxicity and bacterial impact of these particles is not completely elucidated. Results showed that AgNPs produced growth inhibition and oxidative stress in bacteria <i>Escherichia coli</i> (gram negative) and <i>Staphylococcus aureus</i> (gram positive), with half-maximal inhibitory concentrations (IC<sub>50</sub>) of 12 and 7 mg/L, respectively. Surprisingly, bacteria pre-exposed to sublethal dose of AgNPs exhibited increased resistance toward antibiotics (ampicillin and Pen-Strep) with IC<sub>50</sub> elevated by 3–13-fold. Further, AgNP pre-exposure raised the minimal inhibitory concentration and minimal biocidal concentration by two- to eightfold when cells were challenged with antibiotics with diverse mechanisms of action (penicillin, chloramphenicol, and kanamycin). Interestingly, we found that upon exposure to ampicillin, strains pretreated with AgNPs exhibited lower levels of membrane damage and oxidative stress, together with elevated levels of intracellular ATP relative to untreated cells. Bacterial reverse mutation assay (Ames test) showed that AgNPs are highly mutagenic, consistent with further assays demonstrating abiotic reactive oxygen species (ROS) generation and intrinsic DNA cleavage activity <i>in vitro</i> of AgNPs. Overall, our results suggest that AgNPs enhance bacterial resistance to antibiotics by promoting stress tolerance through induction of intracellular ROS. Our data suggest potential consequences of incidental environmental exposure of bacteria to AgNPs and indicate the need to regulate use and disposal of AgNPs in industry and consumer products.</p

    Chemical Composition, Sources, and Health Risk Assessment of PM2.5 and PM10 in Urban Sites of Bangkok, Thailand

    No full text
    Of late, air pollution in Asia has increased, particularly in built-up areas due to rapid industrialization and urbanization. The present study sets out to examine the impact that pollution can have on the health of people living in the inner city of Bangkok, Thailand. Consequently, in 2021, fine particulate matter (PM2.5) and coarse particulate matter (PM10) chemical composition and sources are evaluated at three locations in Bangkok. To identify the possible sources of such particulates, therefore, the principal component analysis (PCA) technique is duly carried out. As determined via PCA, the major sources of air pollution in Bangkok are local emission sources and sea salt. The most significant local sources of PM2.5 and PM10 in Bangkok include primary combustion, such as vehicle emissions, coal combustion, biomass burning, secondary aerosol formation, industrial emissions, and dust sources. Except for the hazard quotient (HQ) of Ni and Mn of PM2.5 for adults, the HQ values of As, Cd, Cr, Mn, and Ni of both PM2.5 and PM10 were below the safe level (HQ = 1) for adults and children. This indicates that exposure to these metals would have non-carcinogenic health effects. Except for the carcinogenic risk (HI) value of Cr of PM2.5 and PM10, which can cause cancer in adults, at Bangna and Din Daeng, the HI values of Cd, Ni, As, and Pb of PM2.5 and PM10 are below the limit set by the U.S. Environmental Protection Agency (U.S. EPA). Ni and Mn pose non-carcinogenic risks, whereas Cr poses carcinogenic risks to adults via inhalation, a serious threat to the residents of Bangkok

    Effects of Porous Size and Membrane Pattern on Shear Stress Characteristic in Gut-on-a-Chip with Peristalsis Motion

    No full text
    Dynamic gut-on-a-chip platform allows better recreation of the intestinal environment in vitro compared to the traditional static cell culture. However, the underlying mechanism is still not fully discovered. In this study, the shear stress behavior in a gut-on-a-chip device with porous membrane subjected to peristalsis motion is numerically investigated using CFD simulation for three different pore sizes and two pattern layouts. The results reveal that, in the stationary microchannel, the average shear stress on the porous membrane is approximately 15% greater than that of the flat membrane, regardless of the pore size. However, when subjected to cyclic deformation, the porous membrane with smaller pore size experiences stronger variation of shear stress which is ±5.61%, ±10.12% and ±34.45% from its average for the pore diameters of 10 μm, 5 μm and 1 μm, respectively. The shear stress distribution is more consistent in case of the staggered pattern layout while the in-line pattern layout allows for a 32% wider range of shear stress at the identical pore size during a cyclic deformation. These changes in the shear stress caused by peristalsis motion, porous size and membrane pattern could be the key factors that promote cell differentiation in the deforming gut-on-a-chip model
    corecore