43 research outputs found

    Effect of Alirocumab on Lipoprotein(a) Over ≥1.5 Years (from the Phase 3 ODYSSEY Program)

    Get PDF
    Elevated lipoprotein(a) [Lp(a)] is independently associated with increased cardiovascular risk. However, treatment options for elevated Lp(a) are limited. Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9, reduced low-density lipoprotein cholesterol (LDL-C) by up to 62% from baseline in phase 3 studies, with adverse event rates similar between alirocumab and controls. We evaluated the effect of alirocumab on serum Lp(a) using pooled data from the phase 3 ODYSSEY program: 4,915 patients with hypercholesterolemia from 10 phase 3 studies were included. Eight studies evaluated alirocumab 75 mg every 2 weeks (Q2W), with possible increase to 150 mg Q2W at week 12 depending on LDL-C at week 8 (75/150 mg Q2W); the other 2 studies evaluated alirocumab 150-mg Q2W from the outset. Comparators were placebo or ezetimibe. Eight studies were conducted on a background of statins, and 2 studies were carried out with no statins. Alirocumab was associated with significant reductions in Lp(a), regardless of starting dose and use of concomitant statins. At week 24, reductions from baseline were 23% to 27% with alirocumab 75/150-mg Q2W and 29% with alirocumab 150-mg Q2W (all comparisons p <0.0001 vs controls). Reductions were sustained over 78 to 104 weeks. Lp(a) reductions with alirocumab were independent of race, gender, presence of familial hypercholesterolemia, baseline Lp(a), and LDL-C concentrations, or use of statins. In conclusion, in addition to marked reduction in LDL-C, alirocumab leads to a significant and sustained lowering of Lp(a)

    Bempedoic acid safety analysis: Pooled data from four phase 3 clinical trials

    Get PDF
    Background An ongoing need exists for safe and effective lipid-lowering therapies (LLTs) for patients unable to achieve desired lipid levels with current treatment options. Objective The objective of this study was to describe the safety profile of bempedoic acid, an oral, first-in-class, adenosine triphosphate (ATP)–citrate lyase inhibitor that significantly reduces low-density lipoprotein cholesterol (LDL-C) levels by 17.4%–28.5% vs placebo. Methods This was a pooled analysis of four phase 3, randomized (2:1), double-blind, placebo-controlled studies in patients with hypercholesterolemia who required additional LDL-C lowering, despite stable maximally-tolerated LLT. Patients received 180 mg of bempedoic acid (n = 2424) or placebo (n = 1197) once daily for 12 to 52 weeks. Assessments included treatment-emergent adverse events (TEAEs) and clinical laboratory tests. Results Of 3621 patients (the median drug exposure: 363 days), exposure-adjusted TEAE rates were 87.1/100 and 82.9/100 person-years (PY) for bempedoic acid and placebo, respectively. No single TEAE influenced the difference in rates. TEAEs leading to discontinuation occurred at rates of 13.4/100 and 8.9/100 PY for bempedoic acid vs placebo, with the most common cause being myalgia, which occurred less frequently with bempedoic acid vs placebo (1.5/100 vs 2.0/100 PY). Rates of myalgia and muscle weakness were comparable vs placebo. Bempedoic acid was associated with mild increases in blood urea nitrogen, creatinine, and uric acid and decreases in hemoglobin. These laboratory abnormalities were apparent by week 4, stable over time, and reversible after treatment cessation. Gout incidence was 1.6/100 vs 0.5/100 PY in the bempedoic acid vs placebo groups. New-onset diabetes/hyperglycemia occurred less frequently with bempedoic acid vs placebo (4.7/100 vs 6.4/100 PY). The safety profile was consistent across subgroups. Conclusions Bempedoic acid is generally safe and well tolerated among patients with hypercholesterolemia who require additional LLT

    Pharmacodynamic effect of bempedoic acid and statin combinations: predictions from a dose–response model

    Get PDF
    Aims Many patients are unable to achieve guideline-recommended LDL cholesterol (LDL-C) targets, despite taking maximally tolerated lipid-lowering therapy. Bempedoic acid, a competitive inhibitor of ATP citrate lyase, significantly lowers LDL-C with or without background statin therapy in diverse populations. Because pharmacodynamic interaction between statins and bempedoic acid is complex, a dose-response model was developed to predict LDL-C pharmacodynamics following administration of statins combined with bempedoic acid. Methods And Results Bempedoic acid and statin dosing and LDL-C data were pooled from 14 phase 1-3 clinical studies. Dose-response models were developed for bempedoic acid monotherapy and bempedoic acid-statin combinations using previously published statin parameters. Simulations were performed using these models to predict change in LDL-C levels following treatment with bempedoic acid combined with clinically relevant doses of atorvastatin, rosuvastatin, simvastatin, and pravastatin. Dose-response models predicted that combining bempedoic acid with the lowest statin dose of commonly used statins would achieve a similar degree of LDL-C lowering as quadrupling that statin dose" for example, the predicted LDL-C lowering was 54% with atorvastatin 80 mg compared with 54% with atorvastatin 20 mg + bempedoic acid 180 mg, and 42% with simvastatin 40 mg compared with 46% with simvastatin 10 mg + bempedoic acid 180 mg. Conclusion These findings suggest bempedoic acid combined with lower statin doses offers similar LDL-C lowering compared with statin monotherapy at higher doses, potentially sparing patients requiring additional lipid-lowering therapies from the adverse events associated with higher statin doses

    Effects of PCSK9 Inhibition With Alirocumab on Lipoprotein Metabolism in Healthy Humans

    Get PDF
    BACKGROUND: Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known whether inhibition of PCSK9 has any effects on very low-density lipoprotein or intermediate-density lipoprotein (IDL) metabolism. Inhibition of PCSK9 also results in reductions of plasma lipoprotein (a) levels. The regulation of plasma Lp(a) levels, including the role of LDL receptors in the clearance of Lp(a), is poorly defined, and no mechanistic studies of the Lp(a) lowering by alirocumab in humans have been published to date. METHODS: Eighteen (10 F, 8 mol/L) participants completed a placebo-controlled, 2-period study. They received 2 doses of placebo, 2 weeks apart, followed by 5 doses of 150 mg of alirocumab, 2 weeks apart. At the end of each period, fractional clearance rates (FCRs) and production rates (PRs) of apoB and apo(a) were determined. In 10 participants, postprandial triglycerides and apoB48 levels were measured. RESULTS: Alirocumab reduced ultracentrifugally isolated LDL-C by 55.1%, LDL-apoB by 56.3%, and plasma Lp(a) by 18.7%. The fall in LDL-apoB was caused by an 80.4% increase in LDL-apoB FCR and a 23.9% reduction in LDL-apoB PR. The latter was due to a 46.1% increase in IDL-apoB FCR coupled with a 27.2% decrease in conversion of IDL to LDL. The FCR of apo(a) tended to increase (24.6%) without any change in apo(a) PR. Alirocumab had no effects on FCRs or PRs of very low-density lipoproteins-apoB and very low-density lipoproteins triglycerides or on postprandial plasma triglycerides or apoB48 concentrations. CONCLUSIONS: Alirocumab decreased LDL-C and LDL-apoB by increasing IDL- and LDL-apoB FCRs and decreasing LDL-apoB PR. These results are consistent with increases in LDL receptors available to clear IDL and LDL from blood during PCSK9 inhibition. The increase in apo(a) FCR during alirocumab treatment suggests that increased LDL receptors may also play a role in the reduction of plasma Lp(a). CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01959971

    Safety of Very Low Low-Density Lipoprotein Cholesterol Levels With Alirocumab: Pooled Data From Randomized Trials

    No full text
    Proprotein convertase subtilisin/kexin type 9 monoclonal antibodies can reduce low-density lipoprotein cholesterol (LDL-C) to very low levels when added to background lipid-lowering therapy. The safety of alirocumab was evaluated in patients with at least 2 consecutive LDL-C values <25 or <15 mg/dl in the ODYSSEY program, with follow-up as long as 104 weeks. Pooled data from 14 trials were analyzed (double-blind treatment 8 to 104 weeks; n = 3,340 alirocumab, n = 1,894 control [placebo or ezetimibe]; representing 4,029 [alirocumab] and 2,114 [control] double-blind patient-years' exposure). In alirocumab-treated patients, 839 (25.1%) achieved 2 consecutive LDL-C values <25 mg/dl, and 314 (9.4%) achieved <15 mg/dl. Baseline LDL-C was lower (mean 100.3 vs. 134.3 mg/dl) in patients with LDL-C <25 versus ≥25 mg/dl. Similar rates of adverse events occurred in patients achieving LDL-C <25 and <15 mg/dl (72.7% and 71.7%, respectively), compared with 76.6% in those who did not achieve LDL-C <25 mg/dl. Neurological and neurocognitive events were similar among the 3 groups. In a propensity score analysis, the rate of cataracts was higher in patients with LDL-C <25 mg/dl (2.6%) versus ≥25 mg/dl (0.8%; hazard ratio: 3.40; 95% confidence interval: 1.58 to 7.35). However, no difference in cataract incidence was observed between pooled alirocumab and control groups. LDL-C levels <25 or <15 mg/dl on alirocumab were not associated with an increase in overall treatment-emergent adverse event rates or neurocognitive events, although cataract incidence appeared to be increased in the group achieving LDL-C levels <25 mg/dl. (Pooled analyses of already reported trials; NCT01288443, NCT01288469, NCT01266876, NCT01812707, NCT01507831, NCT01617655, NCT01623115, NCT01709500, NCT01644175, NCT01644188, NCT01730040, NCT01730053, NCT01644474, and NCT01709513
    corecore