20 research outputs found

    Neonatal incontinentia pigmenti

    No full text

    Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multi-centre study

    Get PDF
    Background In neonatal encephalopathy (NE), the clinical manifestations of injury can only be reliably assessed several years after an intervention, complicating early prognostication and rendering trials of promising neuroprotectants slow and expensive. We aimed to determine the accuracy of thalamic proton magnetic resonance spectroscopy (1H MRS) biomarkers as early predictors of the neurodevelopmental abnormalities observed years after NE. Methods We conducted a prospective multi-centre cohort study across eight neonatal intensive care units, recruiting term neonates who received therapeutic hypothermia for NE. We obtained thalamic 1H MRS 4 to 14 days after birth, which were compared to clinical neurodevelopmental tests performed 18 to 24 months later. The primary endpoint was an abnormal outcome, defined as death, or moderate or severe disability. Receiver operating characteristic (ROC) curves were used to examine the strength of the relationship between selected biomarkers and this outcome. Findings We recruited 223 infants who all underwent MR imaging and spectroscopy at a median (IQR) age of 7 (5 to 10) days, with 190 (85%) followed up for neurological examination at a median (IQR) age of 23 (20 to 25) months. Of those followed up, 31 (16%) had moderate or severe disability, including one death. The thalamic concentration of Nacetylasparate, [NAA], had an area under the ROC curve (AUC) of 0路99 (95% CI 0路94 to 1路00, n=82), and lactate/NAA peak area ratio had an AUC of 0路94 (95% CI 0路89 to 0路97, n=160). From conventional MRI, abnormal signal in the posterior limb of the internal capsule (PLIC) gave an AUC of 0路82 (95% CI 0路76 to 0路87, n=190). Thalamic [NAA] was independently associated with neurodevelopmental outcome scores on multivariable analysis, and had higher prognostic accuracy than conventional MR imaging (98% versus 87%; p<0路001). Interpretation Thalamic 1H MRS measures acquired soon after birth in NE accurately predict neurodevelopment two years later. These could be applied to increase the power of neuroprotection trials, while reducing their duration

    Whole-Body Hypothermia vs Targeted Normothermia for Neonates with Mild Encephalopathy: A Multicenter Pilot Randomized Clinical Trial

    Get PDF
    \ua9 2024 American Medical Association. All rights reserved.Importance: Although whole-body hypothermia is widely used after mild neonatal hypoxic-ischemic encephalopathy (HIE), safety and efficacy have not been evaluated in randomized clinical trials (RCTs), to our knowledge. Objective: To examine the effect of 48 and 72 hours of whole-body hypothermia after mild HIE on cerebral magnetic resonance (MR) biomarkers. Design, Setting, and Participants: This open-label, 3-arm RCT was conducted between October 31, 2019, and April 28, 2023, with masked outcome analysis. Participants were neonates at 6 tertiary neonatal intensive care units in the UK and Italy born at or after 36 weeks\u27 gestation with severe birth acidosis, requiring continued resuscitation, or with an Apgar score less than 6 at 10 minutes after birth and with evidence of mild HIE on modified Sarnat staging. Statistical analysis was per intention to treat. Interventions: Random allocation to 1 of 3 groups (1:1:1) based on age: neonates younger than 6 hours were randomized to normothermia or 72-hour hypothermia (33.5 \ub0C), and those 6 hours or older and already receiving whole-body hypothermia were randomized to rewarming after 48 or 72 hours of hypothermia. Main Outcomes and Measures: Thalamic N-acetyl aspartate (NAA) concentration (mmol/kg wet weight), assessed by cerebral MR imaging and thalamic spectroscopy between 4 and 7 days after birth using harmonized sequences. Results: Of 225 eligible neonates, 101 were recruited (54 males [53.5%]); 48 (47.5%) were younger than 6 hours and 53 (52.5%) were 6 hours or older at randomization. Mean (SD) gestational age and birth weight were 39.5 (1.1) weeks and 3378 (380) grams in the normothermia group (n = 34), 38.7 (0.5) weeks and 3017 (338) grams in the 48-hour hypothermia group (n = 31), and 39.0 (1.1) weeks and 3293 (252) grams in the 72-hour hypothermia group (n = 36). More neonates in the 48-hour (14 of 31 [45.2%]) and 72-hour (13 of 36 [36.1%]) groups required intubation at birth than in the normothermic group (3 of 34 [8.8%]). Ninety-nine neonates (98.0%) had MR imaging data and 87 (86.1%), NAA data. Injury scores on conventional MR biomarkers were similar across groups. The mean (SD) NAA level in the normothermia group was 10.98 (0.92) mmol/kg wet weight vs 8.36 (1.23) mmol/kg wet weight (mean difference [MD], -2.62 [95% CI, -3.34 to -1.89] mmol/kg wet weight) in the 48-hour and 9.02 (1.79) mmol/kg wet weight (MD, -1.96 [95% CI, -2.66 to -1.26] mmol/kg wet weight) in the 72-hour hypothermia group. Seizures occurred beyond 6 hours after birth in 4 neonates: 1 (2.9%) in the normothermia group, 1 (3.2%) in the 48-hour hypothermia group, and 2 (5.6%) in the 72-hour hypothermia group. Conclusions and Relevance: In this pilot RCT, whole-body hypothermia did not improve cerebral MR biomarkers after mild HIE, although neonates in the hypothermia groups were sicker at baseline. Safety and efficacy of whole-body hypothermia should be evaluated in RCTs. Trial Registration: ClinicalTrials.gov Identifier: NCT03409770
    corecore