5 research outputs found

    Laser texturing allows for reducing injection cycle time by 15%

    No full text
    A defined laser texturing of a mould insert has demonstrated positive effects on the productivity when applied in combination with the DuPont grade Zytel(R) HTN51G35HSL NC010, which is PPA polymer containing 35 % glass fibers. A validation test under production conditions has shown that a surface topography tuned with the laser texturing (provided by GF Machining Solutions) has an anti-adhesive effect and allows for a potential gain of 5 seconds cooling time, which corresponds to a cycle time reduction from 33 to 28 seconds or a 15 % productivity increase

    Synthesis of hydrogenated diamondlike carbon thin films using neon-acetylene based high power impulse magnetron sputtering discharges

    No full text
    Hydrogenated diamondlike carbon (DLC:H) thin films exhibit many interesting properties that can be tailored by controlling the composition and energy of the vapor fluxes used for their synthesis. This control can be facilitated by high electron density and/or high electron temperature plasmas that allow one to effectively tune the gas and surface chemistry during film growth, as well as the degree of ionization of the film forming species. The authors have recently demonstrated by adding Ne in an Ar-C high power impulse magnetron sputtering (HiPIMS) discharge that electron temperatures can be effectively increased to substantially ionize C species [Aijaz et al., Diamond Relat. Mater. 23, 1 (2012)]. The authors also developed an Ar-C2H2 HiPIMS process in which the high electron densities provided by the HiPIMS operation mode enhance gas phase dissociation reactions enabling control of the plasma and growth chemistry [Aijaz et al., Diamond Relat. Mater. 44, 117 (2014)]. Seeking to further enhance electron temperature and thereby promote electron impact induced interactions, control plasma chemical reaction pathways, and tune the resulting film properties, in this work, the authors synthesize DLC: H thin films by admixing Ne in a HiPIMS based Ar/C2H2 discharge. The authors investigate the plasma properties and discharge characteristics by measuring electron energy distributions as well as by studying discharge current characteristics showing an electron temperature enhancement in C2H2 based discharges and the role of ionic contribution to the film growth. These discharge conditions allow for the growth of thick (amp;gt;1 mu m) DLC: H thin films exhibiting low compressive stresses (similar to 0.5 GPa), high hardness (similar to 25 GPa), low H content (similar to 11%), and density in the order of 2.2 g/cm(3). The authors also show that film densification and change of mechanical properties are related to H removal by ion bombardment rather than subplantation. (C) 2016 American Vacuum Society.Funding Agencies|Swedish Research Council (VR) [621-2011-4280, 621-2014-4882]; MEra.Net (TANDEM); Linkoping University [Dnr-LiU-2015-01510]; Danish Council for Independent Research, Technology and Production Sciences</p
    corecore