7 research outputs found

    Whole-Exome Sequencing in Age-Related Macular Degeneration Identifies Rare Variants in COL8A1, a Component of Bruch's Membrane

    Get PDF
    Purpose: Genome-wide association studies and targeted sequencing studies of candidate genes have identified common and rare variants that are associated with age-related macular degeneration (AMD). Whole-exome sequencing (WES) studies allow a more comprehensive analysis of rare coding variants across all genes of the genome and will contribute to a better understanding of the underlying disease mechanisms. To date, the number of WES studies in AMD case-control cohorts remains scarce and sample sizes are limited. To scrutinize the role of rare protein-altering variants in AMD cause, we performed the largest WES study in AMD to date in a large European cohort consisting of 1125 AMD patients and 1361 control participants. Design: Genome-wide case-control association study of WES data. Participants: One thousand one hundred twenty-five AMD patients and 1361 control participants. Methods: A single variant association test of WES data was performed to detect variants that are associated individually with AMD. The cumulative effect of multiple rare variants with 1 gene was analyzed using a gene-based CMC burden test. Immunohistochemistry was performed to determine the localization of the Col8a1 protein in mouse eyes. Main Outcome Measures: Genetic variants associated with AMD. Results: We detected significantly more rare protein-altering variants in the COL8A1 gene in patients (22/2250 alleles [1.0%]) than in control participants (11/2722 alleles [0.4%]; P = 7.07×10–5). The association of rare variants in the COL8A1 gene is independent of the common intergenic variant (rs140647181) near the COL8A1 gene previously associated with AMD. We demonstrated that the Col8a1 protein localizes at Bruch's membrane. Conclusions: This study supported a role for protein-altering variants in the COL8A1 gene in AMD pathogenesis. We demonstrated the presence of Col8a1 in Bruch's membrane, further supporting the role of COL8A1 variants in AMD pathogenesis. Protein-altering variants in COL8A1 may alter the integrity of Bruch's membrane, contributing to the accumulation of drusen and the development of AMD

    Two-Minute Training for Improving Neonatal Bag and Mask Ventilation

    No full text
    To test effectivity of a two-minute training consisting of a few key-points in ventilation using the self-inflating bag (SIB).Experienced and inexperienced caregivers were asked to mask ventilate a leak free manikin using the SIB before and after the training. Mask leak and pressures were measured using respiratory function monitoring. Pressures above 35 cm H2O were considered excessive. Parameters were compared using a Wilcoxon non-parametric test.Before and after the short training, experienced caregivers had minimal median (IQR) mask leak (14 (3-75) vs. 3 (0-53)%; p<0.01). Inexperienced users had large leak which reduced from 51 (7-91)% before to 11 (2-71)% after training (p<0.01). Pressures above 35 cm H2O hardly occurred in experienced caregivers (0 (0-5) vs. 0 (0-0)%; ns). In inexperienced caregivers this frequently occurred but decreased considerably after training (94 (46-100) vs. 2 (0-70)%; p<0.01).A two-minute training of bag and mask ventilation was effective. This training could be incorporated into any training program

    Whole-Exome Sequencing in Age-Related Macular Degeneration Identifies Rare Variants in COL8A1, a Component of Bruch's Membrane

    No full text
    Purpose: Genome-wide association studies and targeted sequencing studies of candidate genes have identified common and rare variants that are associated with age-related macular degeneration (AMD). Whole-exome sequencing (WES) studies allow a more comprehensive analysis of rare coding variants across all genes of the genome and will contribute to a better understanding of the underlying disease mechanisms. To date, the number of WES studies in AMD case-control cohorts remains scarce and sample sizes are limited. To scrutinize the role of rare protein-altering variants in AMD cause, we performed the largest WES study in AMD to date in a large European cohort consisting of 1125 AMD patients and 1361 control participants. Design: Genome-wide case-control association study of WES data. Participants: One thousand one hundred twenty-five AMD patients and 1361 control participants. Methods: A single variant association test of WES data was performed to detect variants that are associated individually with AMD. The cumulative effect of multiple rare variants with 1 gene was analyzed using a gene-based CMC burden test. Immunohistochemistry was performed to determine the localization of the Col8a1 protein in mouse eyes. Main Outcome Measures: Genetic variants associated with AMD. Results: We detected significantly more rare protein-altering variants in the COL8A1 gene in patients (22/2250 alleles [1.0%]) than in control participants (11/2722 alleles [0.4%]; P = 7.07 x 10(-5)). The association of rare variants in the COL8A1 gene is independent of the common intergenic variant (rs140647181) near the COL8A1 gene previously associated with AMD. We demonstrated that the Col8a1 protein localizes at Bruch's membrane. Conclusions: This study supported a role for protein-altering variants in the COL8A1 gene in AMD pathogenesis. We demonstrated the presence of Col8a1 in Bruch's membrane, further supporting the role of COL8A1 variants in AMD pathogenesis. Protein-altering variants in COL8A1 may alter the integrity of Bruch's membrane, contributing to the accumulation of drusen and the development of AMD. (C) 2018 by the American Academy of Ophthalmology
    corecore