7 research outputs found

    Forebrain-specific, conditional silencing of Staufen2 alters synaptic plasticity, learning, and memory in rats

    Get PDF
    Background: Dendritic messenger RNA (mRNA) localization and subsequent local translation in dendrites critically contributes to synaptic plasticity and learning and memory. Little is known, however, about the contribution of RNA-binding proteins (RBPs) to these processes in vivo. Results: To delineate the role of the double-stranded RBP Staufen2 (Stau2), we generate a transgenic rat model, in which Stau2 expression is conditionally silenced by Cre-inducible expression of a microRNA (miRNA) targeting Stau2 mRNA in adult forebrain neurons. Known physiological mRNA targets for Stau2, such as RhoA, Complexin 1, and Rgs4 mRNAs, are found to be dysregulated in brains of Stau2-deficient rats. In vivo electrophysiological recordings reveal synaptic strengthening upon stimulation, showing a shift in the frequency-response function of hippocampal synaptic plasticity to favor long-term potentiation and impair long-term depression in Stau2-deficient rats. These observations are accompanied by deficits in hippocampal spatial working memory, spatial novelty detection, and in tasks investigating associative learning and memory. Conclusions: Together, these experiments reveal a critical contribution of Stau2 to various forms of synaptic plasticity including spatial working memory and cognitive management of new environmental information. These findings might contribute to the development of treatments for conditions associated with learning and memory deficits

    Die Rolle von Staufen2 in der neuronalen Plastizität

    No full text
    Staufen2 ist ein mRNA-bindendes Protein (RBP), das in Säugetieren vor allem cerebral exprimiert wird und an der neuronalen Plastizität innerhalb des Hippocampus beteiligt ist. RBPs spielen dabei eine wichtige Rolle in der strengen örtlichen und zeitlichen Regulation der neuroplastischen Vorgänge. Ziel dieser Arbeit war es, die Auswirkungen eines Knockdowns von Staufen2 auf die Morphologie von Dendriten und dendritischen Dornen im Hippocampus der Ratte erstmalig in-vivo zu untersuchen. Als Grundlage dienten transgene Ratten, in denen durch Tamoxifen-Injektion ein RNA-Interferenz-Mechanismus zum Knockdown von Staufen2 aktiviert werden konnte. Die maximale Wirkung zeigte sich in der CA1-Region des Hippocampus, die in der Folge zum Gegenstand der weiteren Untersuchungen genutzt wurde. Mithilfe der Golgi-Cox-Silberimprägnierung konnte gezeigt werden, dass die Spinelänge und die Spinedichte in der apikalen CA1-Region in den Knockout-Tieren signifikant geringer waren. In den basalen Anteilen sowie bei der Morphologie des Dendritenbaums waren keine signifikanten Unterschiede nachweisbar. Andere Arbeitsgruppen konnten zeigen, dass diese Tiere Defizite im räumlichen Arbeitsgedächtnis sowie im räumlichen und zeitlichen Assoziationsgedächtnis haben. Der Grund hierfür könnte darin liegen, dass das normalerweise ausgewogene Verhältnis zwischen LTP und LTD zugunsten der LTP verschoben erscheint. Mit seiner Funktion als RBP und einer Assoziation der LTD scheint Staufen2 eine Rolle in der späten, proteinsynthese-abgängigen Phase der LTD zu spielen, wobei die genauen Funktionsweisen des Proteins weiterhin nicht vollständig verstanden sind. Neben Staufen2 gibt es einer Reihe weitere RBPs mit wichtigen Funktionen innerhalb der neuronalen Plastizität. Einige davon sind mit schweren neurologischen Krankheitsbildern wie dem Fragilen-X-Syndrom, AutismusSpektrum-Störungen, amyotropher Lateralsklerose und frontotemporaler Demenz assoziiert. Ein besseres Verständnis der RBPs im Allgemeinen und von Staufen2 im Besonderen kann somit zukünftig zu einem besseren Verständnis von Lernen und Gedächtnis sowie der Pathogenese schwerer neurologischer Erkrankungen beitragen und möglicherweise auch zu neuen Therapiemöglichkeiten führen

    Stroke-Induced Modulation of Myeloid-Derived Suppressor Cells (MDSCs) and IL-10-Producing Regulatory Monocytes

    No full text
    Background: Stroke patients are at risk of acquiring secondary infections due to stroke-induced immune suppression (SIIS). Immunosuppressive cells comprise myeloid-derived suppressor cells (MDSCs) and immunosuppressive interleukin 10 (IL-10)-producing monocytes. MDSCs represent a small but heterogeneous population of monocytic, polymorphonuclear (or granulocytic), and early progenitor cells (“early” MDSC), which can expand extensively in pathophysiological conditions. MDSCs have been shown to exert strong immune-suppressive effects. The role of IL-10-producing immunosuppressive monocytes after stroke has not been investigated, but monocytes are impaired in oxidative burst and downregulate human leukocyte antigen—DR isotype (HLA-DR) on the cell surface. Objectives: The objective of this work was to investigate the regulation and function of MDSCs as well as the immunosuppressive IL-10-producing monocytes in experimental and human stroke. Methods: This longitudinal, monocentric, non-interventional prospective explorative study used multicolor flow cytometry to identify MDSC subpopulations and IL-10 expression in monocytes in the peripheral blood of 19 healthy controls and 27 patients on days 1, 3, and 5 post-stroke. Quantification of intracellular STAT3p and Arginase-1 by geometric mean fluorescence intensity was used to assess the functionality of MDSCs. In experimental stroke induced by electrocoagulation in middle-aged mice, monocytic (CD11b+Ly6G−Ly6Chigh) and polymorphonuclear (CD11b+Ly6G+Ly6Clow) MDSCs in the spleen were analyzed by flow cytometry. Results: Compared to the controls, stroke patients showed a relative increase in monocytic MDSCs (percentage of CD11b+ cells) in whole blood without evidence for an altered function. The other MDSC subgroups did not differ from the control. Also, in experimental stroke, monocytic, and in addition, polymorphonuclear MDSCs were increased. The numbers of IL-10-positive monocytes did not differ between the patients and controls. However, we provide a new insight into monocytic function post-stroke since we can report that a differential regulation of HLA-DR and PD-L1 was found depending on the IL-10 production of monocytes. IL-10-positive monocytes are more activated post-stroke, as indicated by their increased HLA-DR expression. Conclusions: MDSC and IL-10+ monocytes can induce immunosuppression within days after stroke

    Immune Alterations Following Neurological Disorders: A Comparison of Stroke and Seizures

    No full text
    Background: Granulocytes and monocytes are the first cells to invade the brain post stroke and are also being discussed as important cells in early neuroinflammation after seizures. We aimed at understanding disease specific and common pathways of brain-immune-endocrine-interactions and compared immune alterations induced by stroke and seizures. Therefore, we compared granulocytic and monocytic subtypes between diseases and investigated inflammatory mediators. We additionally investigated if seizure type determines immunologic alterations. Material and Methods: We included 31 patients with acute seizures, 17 with acute stroke and two control cohorts. Immune cells were characterized by flow cytometry from blood samples obtained on admission to the hospital and the following morning. (i) Monocytes subpopulations were defined as classical (CD14++CD16−), (ii) intermediate (CD14++CD16+), and (iii) non-classical monocytes (CD14dimCD16+), while granulocyte subsets were characterized as (i) “classical granulocytes” (CD16++CD62L+), (ii) pro-inflammatory (CD16dimCD62L+), and (iii) anti-inflammatory granulocytes (CD16++CD62L−). Stroke patient's blood was additionally drawn on days 3 and 5. Cerebrospinal fluid mitochondrial DNA was quantified by real-time PCR. Plasma High-Mobility-Group-Protein-B1, metanephrine, and normetanephrine were measured by ELISA. Results: HLA-DR expression on monocytes and their subpopulations (classical, intermediate, and non-classical monocytes) was reduced after stroke or seizures. Expression of CD32 was increased on monocytes and subtypes in epilepsy patients, partly similar to stroke. CD32 and CD11b regulation on granulocytes and subpopulations (classical, anti-inflammatory, pro-inflammatory granulocytes) was more pronounced after stroke compared to seizures. On admission, normetanephrine was upregulated in seizures, arguing for the sympathetic nervous system as inducer of immune alterations similar to stroke. Compared to partial seizures, immunologic changes were more pronounced in generalized tonic-clonic seizures. Conclusion: Seizures lead to immune alterations within the immediate postictal period similar but not identical to stroke. The type of seizures determines the extent of immune alterations

    Forebrain-specific, conditional silencing of Staufen2 alters synaptic plasticity, learning, and memory in rats

    No full text
    © The Author(s).[Background]: Dendritic messenger RNA (mRNA) localization and subsequent local translation in dendrites critically contributes to synaptic plasticity and learning and memory. Little is known, however, about the contribution of RNA-binding proteins (RBPs) to these processes in vivo. [Results]: To delineate the role of the double-stranded RBP Staufen2 (Stau2), we generate a transgenic rat model, in which Stau2 expression is conditionally silenced by Cre-inducible expression of a microRNA (miRNA) targeting Stau2 mRNA in adult forebrain neurons. Known physiological mRNA targets for Stau2, such as RhoA, Complexin 1, and Rgs4 mRNAs, are found to be dysregulated in brains of Stau2-deficient rats. In vivo electrophysiological recordings reveal synaptic strengthening upon stimulation, showing a shift in the frequency-response function of hippocampal synaptic plasticity to favor long-term potentiation and impair long-term depression in Stau2-deficient rats. These observations are accompanied by deficits in hippocampal spatial working memory, spatial novelty detection, and in tasks investigating associative learning and memory. [Conclusions]: Together, these experiments reveal a critical contribution of Stau2 to various forms of synaptic plasticity including spatial working memory and cognitive management of new environmental information. These findings might contribute to the development of treatments for conditions associated with learning and memory deficits.This study was supported by grants from the Spanish Ministry of Science and Competitiveness (BFU2014-56692-R to AG and JMD-G) and the Junta de Andalucía (Spain; BIO-122, CVI-02487, and P07-CVI-02686 to AG and JMD-G), from the European Community’s Seventh Framework Program (FP7/2007- 2013 to AG and DB) under grant agreement number 201714 (DEVANX), from the Austrian Science Fund (SFB-F43 to MAK) and the DFG (FOR2333 to MAK; SPP-1738 to MAK and DB). RS is a Boehringer Ingelheim Fonds fellow

    Quellen- und Literaturverzeichnis

    No full text
    corecore