58 research outputs found

    Evaluation of VI index forecasting model by machine learning for Yahoo! stock BBS using volatility trading simulation

    Get PDF
    The risk avoidance is very crucial in investment and asset management. One commonly used index as a risk index is the VI index. Suwa et al. (2017) analyzed stock bulletin board messages and predicted it rise. In our study, we developed a simulation of trading Nikkei stock index options using intra-day data and verified the validity of the VI index prediction model proposed by Suwa et al. In a period from November 18, 2014, to June 29, 2016, we conducted a simulation using a long straddle strategy. The profit and loss from trading with the instructions of their model was +3,021 yen. The benchmark\u27s profit and loss was -3,590 yen. The improvement with their model was +6,611 yen. Therefore, we confirmed that Suwa et al.\u27s VI index prediction model might be effective

    Signal-transducing adaptor protein-2 modulates T-cell functions

    Get PDF
    Immune responses are orchestrated by controlling the initiation, magnitude, and duration of various signaling pathways. Adaptor proteins act as positive or negative regulators by targeting critical molecules of signaling cascades. Signal-transducing adaptor protein-2 (STAP-2) contains typical features of adaptor proteins, like a pleckstrin homology (PH) domain in the N-terminal region and a Src homology 2 (SH2) domain in the central region. STAP-2 binds to a variety of signaling or transcriptional molecules to control multiple steps of inflammatory/immune responses. STAP-2 enhances T-cell receptor (TCR)-mediated signaling via the association with TCR-proximal CD3ζ immunoreceptor tyrosine-based activation motifs (ITAMs) and lymphocyte-specific protein tyrosine kinase (Lck). STAP-2 decreases adherence of T-cells to fibronectin (FN) through an association with focal adhesion kinase (Fak) and Casitas B-lineage Lymphoma (c-Cbl), and increases chemotaxis of T-cells toward stromal cell-derived factor-1α (SDF-1α) through interactions with Vav1 and Ras-related C3 botulinum toxin substrate 1 (Rac1). STAP-2 positively regulates activation-induced cell deathrough the association with Fas and caspase-8. This review describes the current knowledge of the roles of STAP-2 in T-cell-dependent immune responses and the possible clinical utility of STAP-2-targeting therapies

    In vivo radioactive metabolite analysis for individualized medicine: A basic study of a new method of CYP activity assay using 123I-IMP

    Get PDF
    Introduction: 123I-N-isopropyl-p-iodoamphetamine (123I-IMP) is metabolized and converted to 123I-p-iodoamphetamine (123I-PIA) by CYP2C19 in humans. Since variations in 123I-PIA levels reflect variations in CYP2C19 activity, CYP2C19 activity can be estimated by quantitative analysis of 123I-PIA levels. Thus, 123I-IMP administration can provide diagnostic information not only regarding cerebral blood flow (rCBF) but also regarding metabolic function. The aim of the present study was to detect variations in CYP activity in mice using metabolite analysis. Methods: Metabolism of 125I-IMP in pooled homogenates of mouse liver (MLH) was analyzed by high-performance liquid chromatography (HPLC) in the presence or absence of NADPH. The amount of 125I-PIA generated was calculated as the normalized peak area of the chromatogram. Inhibition of 125I-IMP metabolism was evaluated using the inhibitor SKF-525A. A biodistribution study of 125I-IMP was performed to determine the organ distribution of 125I-IMP/125I-IMP metabolites and the effect of SKF-525A. Variations in CYP activity in vivo were detected by administration of 123I-IMP and/or SKF-525A to mice. The liver and the kidney were then excised, homogenized and analyzed using HPLC. Results: 125I-IMP was metabolized by MLH in the presence of NADPH, and the production of 125I-PIA was inhibited by SKF-525A. SKF-525A did not greatly affect the biodistribution of 125I-IMP/125I-IMP metabolites in vivo. Both 123I-IMP and 123I-PIA were detected in organs of control mice. However, 123I-PIA was not detected in the livers or kidneys of mice treated with SKF-525A. Conclusions: CYP activity in vivo was inhibited by SKF-525A treatment. Variations in CYP activity could be detected in the blood, liver and kidney as changes in the peak area of 123I-PIA. Advances in knowledge and implications for patient care: 123I-IMP metabolite analysis has the potential to provide beneficial information for prediction of the effect of medicines, in addition to its contribution to more accurate rCBF diagnosis that reflects individual CYP activity

    Far-East Asian Toxoplasma isolates share ancestry with North and South/Central American recombinant lineages

    Get PDF
    Ihara F., Kyan H., Takashima Y., et al. Far-East Asian Toxoplasma isolates share ancestry with North and South/Central American recombinant lineages. Nature Communications 15, 4278 (2024); https://doi.org/10.1038/s41467-024-47625-6.Toxoplasma gondii is a global protozoan pathogen. Clonal lineages predominate in Europe, North America, Africa, and China, whereas highly recombinant parasites are endemic in South/Central America. Far East Asian T. gondii isolates are not included in current global population genetic structure analyses at WGS resolution. Here we report a genome-wide population study that compared eight Japanese and two Chinese isolates against representative worldwide T. gondii genomes using POPSICLE, a novel population structure analyzing software. Also included were 7 genomes resurrected from non-viable isolates by target enrichment sequencing. Visualization of the genome structure by POPSICLE shows a mixture of Chinese haplogroup (HG) 13 haploblocks introgressed within the genomes of Japanese HG2 and North American HG12. Furthermore, two ancestral lineages were identified in the Japanese strains; one lineage shares a common ancestor with HG11 found in both Japanese strains and North American HG12. The other ancestral lineage, found in T. gondii isolates from a small island in Japan, is admixed with genetically diversified South/Central American strains. Taken together, this study suggests multiple ancestral links between Far East Asian and American T. gondii strains and provides insight into the transmission history of this cosmopolitan organism

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    An Elastic Foot Orthosis for Limiting the Increase of Shear Modulus of Lower Leg Muscles after a Running Task: A Randomized Crossover Trial

    No full text
    Background: Excessive foot pronation may be attributed to an increasing burden on leg muscles during running, which might be a factor in medial tibial stress syndrome. We developed an elastic foot orthosis (EFO) that can decrease foot pronation and aimed to identify whether this orthosis could limit the increase in lower leg muscle hardness after running. Methods: Twenty-one healthy volunteers participated in this randomized crossover trial with an elastic or sham foot orthosis (SFO). All volunteers ran on a treadmill for 60 min while wearing either orthosis. Muscle hardness of the posterior lower leg was assessed using shear wave elastography before and after running. The Wilcoxon signed rank test was used to compare muscle hardness between the two orthotic conditions. Results: No significant differences were observed between the two orthotic conditions before running (p > 0.05). After running, the flexor digitorum longus (FDL) hardness in the EFO group was significantly lower than that in the SFO group (p < 0.01). No significant changes were observed in the other muscles. Conclusion: The results suggest that the EFO can restrict the increase in FDL hardness with running. The EFO may be an effective orthotic treatment for medial tibial stress syndrome

    Signal-transducing adaptor protein-2 modulates T-cell functions

    Get PDF
    Immune responses are orchestrated by controlling the initiation, magnitude, and duration of various signaling pathways. Adaptor proteins act as positive or negative regulators by targeting critical molecules of signaling cascades. Signal-transducing adaptor protein-2 (STAP-2) contains typical features of adaptor proteins, like a pleckstrin homology (PH) domain in the N-terminal region and a Src homology 2 (SH2) domain in the central region. STAP-2 binds to a variety of signaling or transcriptional molecules to control multiple steps of inflammatory/immune responses. STAP-2 enhances T-cell receptor (TCR)-mediated signaling via the association with TCR-proximal CD3ζ immunoreceptor tyrosine-based activation motifs (ITAMs) and lymphocyte-specific protein tyrosine kinase (Lck). STAP-2 decreases adherence of T-cells to fibronectin (FN) through an association with focal adhesion kinase (Fak) and Casitas B-lineage Lymphoma (c-Cbl), and increases chemotaxis of T-cells toward stromal cell-derived factor-1α (SDF-1α) through interactions with Vav1 and Ras-related C3 botulinum toxin substrate 1 (Rac1). STAP-2 positively regulates activation-induced cell deathrough the association with Fas and caspase-8. This review describes the current knowledge of the roles of STAP-2 in T-cell-dependent immune responses and the possible clinical utility of STAP-2-targeting therapies

    A high-performance Ni-CeO2/Ni/Ni-Y2O3·ZrO2 three-layer anode for direct iso-octane feeding of solid oxide fuel cells

    No full text
    Solid oxide fuel cells (SOFCs) directly fed with iso-octane are expected to be power sources for mobile devices and automobiles. However, the conventional anode catalysts nickel (Ni) or cerium oxide (CeO2) used for direct feeding of iso-octane do not suppress carbon deposition or generate high power. In this study, we investigated the Ni-CeO2/Ni/Ni-yttria-stabilized-zirconia (YSZ) three-layer anode to establish the suppression of carbon deposition and high-power generation in the SOFC. The anode consists of a Ni-CeO2 catalyst layer as the top layer, an Ni catalyst layer as the second layer, and a Ni-YSZ catalyst layer as the third layer on top of the electrolyte. The concept of the three-layer anode is as follows: fuel reforming occurs in the Ni-CeO2 layer, the reformed H2 or CO is electrochemically oxidized in the Ni-YSZ catalyst layer, and the Ni catalyst middle layer prevents the reaction between YSZ and CeO2. Scanning electron microscopy and electrochemical characterization confirmed carbon deposition suppression and improved power generation. The anode showed no carbon deposition and generated high-power, 600 mA cm−2 and 150 mW cm−2, at 950°C and a steam/carbon ratio of 3.0. Additionally, we discuss the fuel reforming reactions on the three-layer electrode by the results of exhaust gas analysis

    Effect of Surface Modification for Carbon Cathode Materials on Charge–Discharge Performance of Li-Air Batteries

    No full text
    Li-air batteries have attracted considerable attention as rechargeable secondary batteries with a high theoretical energy density of 11,400 kWh/g. However, the commercial application of Li-air batteries is hindered by issues such as low energy efficiency and a short lifetime (cycle numbers). To overcome these issues, it is important to select appropriate cathode materials that facilitate high battery performance. Carbon materials are expected to be ideal materials for cathodes due to their high electrical conductivity and porosity. The physicochemical properties of carbon materials are known to affect the performance of Li-air batteries because the redox reaction of oxygen, which is an important reaction for determining the performance of Li-air batteries, occurs on the carbon materials. In this study, we evaluated the effect of the surface modification of carbon cathode materials on the charge–discharge performance of Li-air batteries using commercial Ketjenblack (KB) and KB subjected to vacuum ultraviolet (VUV) irradiation as cathodes. The surface wettability of KB changed from hydrophobic to hydrophilic as a result of the VUV irradiation. The ratio of COOH and OH groups on the KB surface increased after VUV irradiation. Raman spectra demonstrated that no structural change in the KB before and after VUV irradiation was observed. The charge and discharge capacities of a Li-air battery using VUV-irradiated KB as the cathode decreased compared to original KB, whereas the cycling performance of the Li-air battery improved considerably. The sizes and shapes of the discharge products formed on the cathodes changed considerably due to the VUV irradiation. The difference in the cycling performance of the Li-air battery was discussed from the viewpoint of the chemical properties of KB and VUV-irradiated KB
    corecore