567 research outputs found

    Infrared Screening of Residential Buildings for Energy Audit Purposes: Results of a Field Test

    Get PDF
    Abstract: In the European Union (EU), the building sector is responsible for approximately 40% of total energy consumption. The existing building stock is inefficient and can, and indeed must be retrofitted to address this issue. The practical implementation of the European strategies requires knowledge of the energy performance of existing buildings through energy audit techniques. Application of thermography in the fields of energy are very widespread, since, through such a non-invasive investigation, and through correct interpretation of infrared images, it is possible to highlight inefficiencies in buildings and related facilities. The paper shows and discusses the results of an infrared audit campaign on 14 existing buildings located in Milan Province (Italy) made in different construction periods and characterised, therefore, by different building technologies. The U-values obtained in an indirect way through the thermography of the opaque walls of the buildings investigated, were compared with the actual known values in order to verify the reliability of the method and the possible margin of error. The study indicated that the category of buildings in which the application of this method is sufficiently reliable is that of solid-mass structure buildings, the most widespread in Italy, whereas in the case of buildings whose external walls are insulated, the percentage of deviation is very high

    Spectrometric performances of monocrystalline artificial diamond detectors operated at high temperature

    Get PDF

    Manufacture and electromechanical characterization of highly conductive multilayer-graphene/polydimethylsiloxane flexible paper

    Get PDF
    Multilayer graphene (MLG) micro- and nanosheets have been investigated for use as nanofiller in polymer composite in order to obtain multifunctional materials with enhanced electrical conductivity and mechanical properties. In order to take advantage of the conductivity properties of MLG sheets, a large amount of nanofiller should be used. Although, increasing filler loading alters the mechanical properties of the composite because of serious filler agglomeration. It has been shown that a promising approach to realize electrically conductive light-weight composite is to incorporate an electrically conductive graphene paper (GP), obtained by vacuum filtration of a nanofillers suspension, into the polymer matrix. One advantage of infiltrating the GP with polymer is that the tensile modulus of the composite can be greatly improved as compared with either GP or neat polymer, without weakening the electrical properties of the highly continuous nanofillers network formed in the paper making process. In this work we present experimental results related to the fabrication process and the electromechanical behaviour of a free standing, highly-conductive MLG paper impregnated with polydimethylsiloxane (PDMS)

    Three-dimensional mapping of ultrasound-derived skeletal muscle shear wave velocity

    Get PDF
    Introduction: The mechanical properties of skeletal muscle are indicative of its capacity to perform physical work, state of disease, or risk of injury. Ultrasound shear wave elastography conducts a quantitative analysis of a tissue's shear stiffness, but current implementations only provide two-dimensional measurements with limited spatial extent. We propose and assess a framework to overcome this inherent limitation by acquiring numerous and contiguous measurements while tracking the probe position to create a volumetric scan of the muscle. This volume reconstruction is then mapped into a parameterized representation in reference to geometric and anatomical properties of the muscle. Such an approach allows to quantify regional differences in muscle stiffness to be identified across the entire muscle volume assessed, which could be linked to functional implications. Methods: We performed shear wave elastography measurements on the vastus lateralis (VL) and the biceps femoris long head (BFlh) muscle of 16 healthy volunteers. We assessed test-retest reliability, explored the potential of the proposed framework in aggregating measurements of multiple subjects, and studied the acute effects of muscular contraction on the regional shear wave velocity post-measured at rest. Results: The proposed approach yielded moderate to good reliability (ICC between 0.578 and 0.801). Aggregation of multiple subject measurements revealed considerable but consistent regional variations in shear wave velocity. As a result of muscle contraction, the shear wave velocity was elevated in various regions of the muscle; showing pre-to-post regional differences for the radial assessement of VL and longitudinally for BFlh. Post-contraction shear wave velocity was associated with maximum eccentric hamstring strength produced during six Nordic hamstring exercise repetitions. Discussion and Conclusion: The presented approach provides reliable, spatially resolved representations of skeletal muscle shear wave velocity and is capable of detecting changes in three-dimensional shear wave velocity patterns, such as those induced by muscle contraction. The observed systematic inter-subject variations in shear wave velocity throughout skeletal muscle additionally underline the necessity of accurate spatial referencing of measurements. Short high-effort exercise bouts increase muscle shear wave velocity. Further studies should investigate the potential of shear wave elastography in predicting the muscle's capacity to perform work

    SEM tomography for the investigation of hybrid structures

    Get PDF
    The morphological investigation at the micrometric scale of a graphene - ZnO nanorods hybrid structure is performed by scanning electron microscopy. When operated in the scanning-transmission imaging mode, the detection strategy allows implementation of a tomographic approach to recover the three dimensional spatial arrangement of the sample constituents. This tomographic approach complements the serial-sectioning imaging methods and is suitable for thin, self-standing specimens

    A diamond detector based dosimetric system for instantaneous dose rate measurements in FLASH electron beams

    Get PDF
    Objective. A reliable determination of the instantaneous dose rate (I-DR) delivered in FLASH radiotherapy treatments is believed to be crucial to assess the so-called FLASH effect in preclinical and biological studies. At present, no detectors nor real-time procedures are available to do that in ultra high dose rate (UH-DR) electron beams, typically consisting of μs pulses characterized by I-DRs of the order of MGy/s. A dosimetric system is proposed possibly overcoming the above reported limitation, based on the recently developed flashDiamond (fD) detector (model 60025, PTW-Freiburg, Germany). Approach. A dosimetric system is proposed, based on a flashDiamond detector prototype, properly modified and adapted for very fast signal transmission. It was used in combination with a fast transimpedance amplifier and a digital oscilloscope to record the temporal traces of the pulses delivered by an ElectronFlash linac (SIT S.p.A., Italy). The proposed dosimetric systems was investigated in terms of the temporal characteristics of its response and the capability to measure the absolute delivered dose and instantaneous dose rate (I-DR). A ‘standard’ flashDiamond was also investigated and its response compared with the one of the specifically designed prototype. Main results. Temporal traces recorded in several UH-DR irradiation conditions showed very good signal to noise ratios and rise and decay times of the order of a few tens ns, faster than the ones obtained by the current transformer embedded in the linac head. By analyzing such signals, a calibration coefficient was derived for the fD prototype and found to be in agreement within 1% with the one obtained under reference 60Co irradiation. I-DRs as high as about 2 MGy s−1 were detected without any undesired saturation effect. Absolute dose per pulse values extracted by integrating the I-DR signals were found to be linear up to at least 7.13 Gy and in very good agreement with the ones obtained by connecting the fD to a UNIDOS electrometer (PTW-Freiburg, Germany). A good short term reproducibility of the linac output was observed, characterized by a pulse-to-pulse variation coefficient of 0.9%. Negligible differences were observed when replacing the fD prototype with a standard one, with the only exception of a somewhat slower response time for the latter detector type. Significance. The proposed fD-based system was demonstrated to be a suitable tool for a thorough characterization of UH-DR beams, providing accurate and reliable time resolved I-DR measurements from which absolute dose values can be straightforwardly derived

    Low Birth Weight and Risk of Later-Life Physical Disability in Women

    Get PDF
    Background: There is strong evidence that low and high birth weight due to in-utero programming results in elevated risk for adult diseases, though less research has been performed examining the influence of birth weight and physical disability later in life. Methods: Baseline data from 76,055 postmenopausal women in the Women's Health Initiative, a large multi-ethnic cohort, were used to examine the association between self-reported birth weight category (<6 lbs, 6-7 lbs 15 oz, 8-9 lbs 15 oz, and ≥10 lbs) and the self-reported physical functioning score on the RAND 36-item Health Survey. Linear regression models were adjusted for age, education, race/ethnicity, body mass index, and a comorbidity score. Results: Unadjusted models indicate that women born in the lowest and highest birth weight categories have significantly lower physical functioning scores as compared to women born in the normal weight category (β = -2.22, p < .0001 and β = -3.56, p < .0001, respectively). After adjustments, the relationship between the lowest birth weight category and physical functioning score remained significant (β = -1.52, p < .0001); however, the association with the highest birth weight category dissipated. Conclusions: Preconception and prenatal interventions aimed at reducing the incidence of low birth weight infants may subsequently reduce the burden of later-life physical disability

    Survey of ear flies (Diptera, Ulidiiae) in maize (Zea mays L.) and a new record of Euxesta mazorca Steyskal in Brazil.

    Get PDF
    Survey of ear flies (Diptera, Ulidiidae) in maize (Zea mays L.) and a new record of Euxesta mazorca Steyskal in Brazil. Species of Euxesta (Diptera, Ulidiidae), known as silk flies or ear flies, are becoming increasingly important as maize insect pests in South America, although very little is known about them in Brazil. The larvae of some species of this genus initially damage female reproductive tissues, and then the developing kernels on the ear. As a result of feeding, fermentation and associated odors cause complete loss of the grain because it is no longer fit for human or livestock consumption. The main objective of th is work was to evaluate the incidence of Euxesta spp. in Brazilian maize fields and to determine the most prevalent species using two different hydrolyzed protein foods attractants, BioAnastrepha® (hydrolyzed maize protein) and Torula, placed inside McPhail traps. The two species identified were E. eluta Loew and E. mazorca Steyskal, the latter being a new record from Brazil. Between the two species, E. eluta was the more abundant in maize fields. Both attractants were efficient in capturing the two species. However, BioAnastrepha® captured significantly more insects than Torula. Levantamento de mosca-da-espiga (Diptera: Ulidiidae) em milho (Zea mays L.) e primeiro relato de ocorrência de Euxesta mazorca Steyskal no Brasil. Espécies de Euxesta (Diptera, Ulidiidae), conhecidas como moscas do cabelo ou moscas da espiga estão aumentando em importância nas culturas de milho em diferentes países, embora muito pouco se conheça sobre elas no Brasil. As larvas das espécies representativas de Ulidiidae inicialmente danificam a parte reprodutiva feminina da planta e depois os grãos em desenvolvimento. Como resultado da alimentação das larvas ocorre fermentação e odor forte tornando a espiga inapropriada para o consumo humano ou animal. O principal objetivo deste trabalho foi avaliar a incidência de espécies de Euxesta em áreas de produção de milho e identificar as espécies predominantes usando dois atraentes alimentares diferentes à base de proteínas hidrolisáveis, BioAnastrepha® (proteína hidrolisável de milho) e Torula, colocados no interior de armadilha McPhail. As duas espécies identificadas foram E. eluta Loew and E. mazorca Steyskal, registrada pela primeira vez no Brasil. Entre as espécies, E. eluta foi predominante no milho. Ambos os atraentes foram eficientes na captura das duas espécies. No entanto, as armadilhas com BioAnastrepha® capturaram significativamente mais insetos do que aquelas com Torula
    corecore