7 research outputs found

    Global Sensitivity Analysis of environmental models:Convergence and validation

    Get PDF
    AbstractWe address two critical choices in Global Sensitivity Analysis (GSA): the choice of the sample size and of the threshold for the identification of insensitive input factors. Guidance to assist users with those two choices is still insufficient. We aim at filling this gap. Firstly, we define criteria to quantify the convergence of sensitivity indices, of ranking and of screening, based on a bootstrap approach. Secondly, we investigate the screening threshold with a quantitative validation procedure for screening results. We apply the proposed methodologies to three hydrological models with varying complexity utilizing three widely-used GSA methods (RSA, Morris, Sobol’). We demonstrate that convergence of screening and ranking can be reached before sensitivity estimates stabilize. Convergence dynamics appear to be case-dependent, which suggests that “fit-for-all” rules for sample sizes should not be used. Other modellers can easily adopt our criteria and procedures for a wide range of GSA methods and cases

    16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy

    Get PDF
    Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65 046 European population controls (5/393 cases versus 32/65 046 controls; Fisher's exact test P = 2.83 × 10−6, odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10−4). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical R

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    fannysarrazin/NP_point_sources_model: v1.0

    No full text
    <p>First numbered release containing:</p> <ul> <li>functions to estimate domestic and industrial/commercial N and P gross and net emissions from wastewater at the spatial level for which the input data at available</li> <li>functions to disaggregate N and P emissions from wastewater to grid level</li> <li>main file to estimate the N and P emissions for Germany</li> </ul&gt

    A Matlab toolbox for Global Sensitivity Analysis

    Get PDF
    AbstractGlobal Sensitivity Analysis (GSA) is increasingly used in the development and assessment of environmental models. Here we present a Matlab/Octave toolbox for the application of GSA, called SAFE (Sensitivity Analysis For Everybody). It implements several established GSA methods and allows for easily integrating others. All methods implemented in SAFE support the assessment of the robustness and convergence of sensitivity indices. Furthermore, SAFE includes numerous visualisation tools for the effective investigation and communication of GSA results. The toolbox is designed to make GSA accessible to non-specialist users, and to provide a fully commented code for more experienced users to complement their own tools. The documentation includes a set of workflow scripts with practical guidelines on how to apply GSA and how to use the toolbox. SAFE is open source and freely available for academic and non-commercial purpose. Ultimately, SAFE aims at contributing towards improving the diffusion and quality of GSA practice in the environmental modelling community

    16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy

    No full text
    corecore