70 research outputs found

    Low-Field MRI : How Low Can We Go? A Fresh View on an Old Debate

    Get PDF
    Funding This work was supported by the Swiss National Science Foundation (grants #PP00P2_170575; PCEFP2_186861)Peer reviewe

    Biplanar quadrature coil for versatile low-field extremity MRI

    Get PDF
    Funding This work is supported by the Swiss National Science Foundation (Grant Numbers 170575, 186861, and 198905). Acknowledgments The authors warmly thank Prof. Dr. André Constantinesco for sharing his expertise in low-field technologies, as well as for his generosity and strong support especially during the early days of the AMT Center, when the platform was still in the making.Peer reviewedPublisher PD

    Fast, interleaved, Look‐Locker–based T1 mapping with a variable averaging approach : Towards temperature mapping at low magnetic field

    Get PDF
    The authors thank COST Action CA15209 for insightful discussions. This research was funded by the Swiss National Science Foundation (Grant Nos. 170575, 186861, and 198905). Open access funding provided by Universitat Basel.Peer reviewedPublisher PD

    Biplanar quadrature coil for versatile low-field extremity MRI

    Get PDF
    Biplanar magnets offer extended flexibility in MRI, particularly appealing due to unmatched accessibility to the patient. At low field strength (<0.2 T), such geometries could be particularly suitable for interventional settings or purpose-built applications such as musculoskeletal imaging. In the proposed work, we present a dual-channel, biplanar coil array for low-field MRI featuring almost fully open access when sited in a biplanar magnet. The proposed detector relies on the assembly of two orthogonal biplanar coils (single transmit channel, two receive channels in quadrature) respectively interfaced with custom inductive couplers. Simulations of the B1 field in each element were performed before the quadrature coil was built and used at ∌ 0.1 T (4.33 MHz). Once assembled, the best performance in our setup was achieved in undermatched conditions in place of conventional 50-Ω matching. Phantom images display the extended coverage of the quadrature coil, with similar SNR from each individual biplanar coil. The combined images show an expected SNR gain of 2 that confirms good decoupling between the two channels (−36 dB). To the best of our knowledge, the proposed coil represents the first implementation of a biplanar geometry at low field and the first quadrature detection for a biplanar design. The open design and overall good sensitivity of our biplanar design enabled fast and quasi-isotropic 3D imaging with (1.6 × 1.6 × 2.2) mm3 resolution in vivo in human extremities

    Quantitative MRI to Characterize the Nucleus Pulposus Morphological and Biomechanical Variation According to Sagittal Bending Load and Radial Fissure, an ex vivo Ovine Specimen Proof-of-Concept Study

    Get PDF
    Background and context: Low back pain is a dramatic burden worldwide. Discography studies have shown that 39% of chronic low back pain patients suffer from discogenic pain due to a radial fissure of intervertebral disc. This can have major implications in clinical therapeutic choices. The use of discography is restricted because of its invasiveness and interest in it remains low as it represents a static condition of the disc morphology. Magnetic Resonance Imaging (MRI) appears to be less invasive but does not describe the biomechanical dynamic behavior of the fissure.Purpose: We aimed to seek a quantitative MRI protocol combined with ex vivo sagittal loading to analyze the morphological and biomechanical changes of the intervertebral disc structure and stress distribution.Study design: Proof of concept.Methods: We designed a proof-of-concept ovine study including 3 different 3.0 T-MRI sequences (T2-weighted, T1 and T2 mapping). We analyzed 3 different mechanical states (neutral, flexion and extension) on a fresh ovine spine specimen to characterize an intervertebral disc before and after puncturing the anterior part of the annulus fibrosus. We used a mark tracking method to calculate the bending angles and the axial displacements of the discal structures. In parallel, we created a finite element model to calculate the variation of the axial stress and the maximal intensity shear stress, extrapolated from our experimental boundary conditions.Results: Thanks to an original combination of specific nuclear relaxation time quantifications (T1, T2) of the discal tissue, we characterized the nucleus movement/deformation into the fissure according to the synchronous mechanical load. This revealed a link between disc abnormality and spine segment range of motion capability. Our finite element model highlighted significant variations within the stress distribution between intact and damaged disc.Conclusion: Quantitative MRI appears to provide a new opportunity to characterize intra-discal structural morphology, lesions and stress changes under the influence of mechanical load. This preliminary work could have substantial implications for non-invasive disc exploration and could help to validate novel therapies for disc treatment

    Imagerie quantitative du dépot d'aérosols dans les voies aériennes par résonance magnétique de l'hélium-3 hyperpolarisé

    No full text
    Inhalation therapy has broadened its field of application over the last two decades by considering the lung not only as an organ to cure, but also as a portal toward systemic circulation. This new approach is being made possible by the emergence of biotherapeutics and a greater understanding of the absorption properties of the lung. Systemic delivery across the oronasal route was then investigated for a number of indications including migraine, diabetes, pain, and cancer. However, progress into the market of systemic aerosolized drug delivery has been slowed down to-date by a number of confounding factors including rapid clearance, instability, long-term toxicity, and dosing issues. Final drug distribution in such complex geometries strongly depends on a variety of parameters like the aerosol administration protocol, particle size, density, and physicochemical properties, as well as the airway geometry. Independently of drug formulation and pharmacokinetic considerations, these parameters determine the deposition distribution throughout the lung. Quantification and spatial localization are primordially needed to better control and optimize drug concentration at specific or less- and nonspecific sites. Nuclear medicine techniques are currently the only available modalities that combine both aerosol quantification and regional localization. They are considered as reference techniques even though they remain limited by their spatial and temporal resolutions as well as by patient exposure to radiations. With regard to lung imaging, hyperpolarized helium-3 MRI has been developed as a powerful tool to quantitatively characterize the parenchyma and the organ function and morphology. The technique is innocuous and provides millimeter and sub-second resolutions with rather high signal to noise ratios. In this thesis, a new imaging modality was developed on the grounds of hyperpolarized helium-3 MRI to probe and quantify aerosol deposition in the airways. In the first part of the thesis, I describe the potential of helium-3 MRI to probe aerosol deposition by using superparamagnetic contrast agents. The second part mainly focuses on the validation of this new modality by comparing it to a reference technique, single photon emission computed tomography (SPECT), and computational fluid dynamics. The last part of the manuscript is dedicated to aerosol administration and in vivo measurements in rat lungs. This experiment was possible by designing and building an MR compatible gas administrator and ventilator dedicated to small animals, SAGAS (Small Animal Gas Administration System). Its complete hardware and software description is presented in the same chapter.Le paysage des thĂ©rapies inhalĂ©es connaĂźt de profondes Ă©volutions depuis les deux derniĂšres dĂ©cennies, avec pour objet la considĂ©ration nouvelle du poumon comme un site de transfert des agents thĂ©rapeutiques vers le compartiment sanguin. Cette approche originale est apparue par la combinaison de dĂ©veloppements thĂ©oriques et pratiques multiples impliquĂ©s dans la mise au point de nombreux mĂ©dicaments, depuis le traitement de la douleur et du diabĂšte jusqu'Ă  la vaccination et le traitement de certains cancers. La quantitĂ© effective de mĂ©dicament dĂ©livrĂ©e par aĂ©rosols est pondĂ©rĂ©e par de nombreux facteurs dont le mode et les conditions d’inhalation, les propriĂ©tĂ©s physiques des gaz en jeu, la morphologie des voies respiratoires ou encore les propriĂ©tĂ©s physico-chimiques des particules vĂ©hiculĂ©es. Les dĂ©veloppements en cours ces quatre derniĂšres annĂ©es ont Ă©tĂ© conditionnĂ©s par des rĂ©sultats encore mal compris, soulignant les limites des connaissances sur le transport et le dĂ©pĂŽt d'aĂ©rosols dans le poumon. Ces manques mettent en avant le besoin d'outils performants pour l'Ă©valuation du dĂ©pĂŽt de particules dans les voies respiratoires.Les techniques d’imagerie permettent Ă  la fois l’évaluation spatiale et quantitative du dĂ©pĂŽt, avec pour seules rĂ©fĂ©rences aujourd’hui, les techniques de mĂ©decine nuclĂ©aire. Outre l’aspect ionisant de ces techniques, elles bĂ©nĂ©ficient d’une sensibilitĂ© de dĂ©tection encore inĂ©galĂ©e. Elles demeurent nĂ©anmoins limitĂ©es par des rĂ©solutions spatiale et temporelle faibles, rendant le plus souvent difficile tant l’interprĂ©tation du dĂ©pĂŽt que le rĂŽle jouĂ© par les principaux mĂ©canismes de clairance dans les voies aĂ©riennes. Depuis la fin des annĂ©es 1990, les techniques de rĂ©sonance magnĂ©tique imagent des noyaux hyperpolarisĂ©s (hĂ©lium-3 et xenon-129) et Ă©tablissent de nouveaux standards dans l’exploration de la fonction pulmonaire.Cette thĂšse Ă©tablit, sur la base de l’IRM de l’hĂ©lium-3 hyperpolarisĂ©, une nouvelle modalitĂ© d’imagerie pour dĂ©tecter et quantifier le dĂ©pĂŽt d’aĂ©rosols dans les voies aĂ©riennes.Dans un premier temps, et dans un contexte oĂč l’imagerie par rĂ©sonance magnĂ©tique ne s’était pas encore penchĂ©e sur la problĂ©matique des aĂ©rosols thĂ©rapeutiques, un vaste travail d’investigation a Ă©tĂ© menĂ© pour Ă©valuer la sensibilitĂ© de l’IRM de l’hĂ©lium-3 hyperpolarisĂ© au dĂ©pĂŽt d’aĂ©rosols marquĂ©s Ă  base d’oxyde de fer superparamagnĂ©tique. Le second volet de ce travail s’est portĂ© sur la validation de notre mĂ©thode d’évaluation, et sur le dĂ©veloppement de la quantification du dĂ©pĂŽt d’aĂ©rosols. Nous avons enfin pu tester la reproductibilitĂ© de notre mĂ©thode d’évaluation du dĂ©pĂŽt in vivo chez le rat, grĂące Ă  la rĂ©alisation d’une plateforme de ventilation et d’administration de gaz et d’aĂ©rosols dĂ©diĂ©e, SAGAS

    Hyperpolarized helium-3 MRI for detection and quantification of aerosol deposition in the airways

    No full text
    Le paysage des thĂ©rapies inhalĂ©es connaĂźt de profondes Ă©volutions depuis les deux derniĂšres dĂ©cennies, avec pour objet la considĂ©ration nouvelle du poumon comme un site de transfert des agents thĂ©rapeutiques vers le compartiment sanguin. Cette approche originale est apparue par la combinaison de dĂ©veloppements thĂ©oriques et pratiques multiples impliquĂ©s dans la mise au point de nombreux mĂ©dicaments, depuis le traitement de la douleur et du diabĂšte jusqu'Ă  la vaccination et le traitement de certains cancers. La quantitĂ© effective de mĂ©dicament dĂ©livrĂ©e par aĂ©rosols est pondĂ©rĂ©e par de nombreux facteurs dont le mode et les conditions d’inhalation, les propriĂ©tĂ©s physiques des gaz en jeu, la morphologie des voies respiratoires ou encore les propriĂ©tĂ©s physico-chimiques des particules vĂ©hiculĂ©es. Les dĂ©veloppements en cours ces quatre derniĂšres annĂ©es ont Ă©tĂ© conditionnĂ©s par des rĂ©sultats encore mal compris, soulignant les limites des connaissances sur le transport et le dĂ©pĂŽt d'aĂ©rosols dans le poumon. Ces manques mettent en avant le besoin d'outils performants pour l'Ă©valuation du dĂ©pĂŽt de particules dans les voies respiratoires.Les techniques d’imagerie permettent Ă  la fois l’évaluation spatiale et quantitative du dĂ©pĂŽt, avec pour seules rĂ©fĂ©rences aujourd’hui, les techniques de mĂ©decine nuclĂ©aire. Outre l’aspect ionisant de ces techniques, elles bĂ©nĂ©ficient d’une sensibilitĂ© de dĂ©tection encore inĂ©galĂ©e. Elles demeurent nĂ©anmoins limitĂ©es par des rĂ©solutions spatiale et temporelle faibles, rendant le plus souvent difficile tant l’interprĂ©tation du dĂ©pĂŽt que le rĂŽle jouĂ© par les principaux mĂ©canismes de clairance dans les voies aĂ©riennes. Depuis la fin des annĂ©es 1990, les techniques de rĂ©sonance magnĂ©tique imagent des noyaux hyperpolarisĂ©s (hĂ©lium-3 et xenon-129) et Ă©tablissent de nouveaux standards dans l’exploration de la fonction pulmonaire.Cette thĂšse Ă©tablit, sur la base de l’IRM de l’hĂ©lium-3 hyperpolarisĂ©, une nouvelle modalitĂ© d’imagerie pour dĂ©tecter et quantifier le dĂ©pĂŽt d’aĂ©rosols dans les voies aĂ©riennes.Dans un premier temps, et dans un contexte oĂč l’imagerie par rĂ©sonance magnĂ©tique ne s’était pas encore penchĂ©e sur la problĂ©matique des aĂ©rosols thĂ©rapeutiques, un vaste travail d’investigation a Ă©tĂ© menĂ© pour Ă©valuer la sensibilitĂ© de l’IRM de l’hĂ©lium-3 hyperpolarisĂ© au dĂ©pĂŽt d’aĂ©rosols marquĂ©s Ă  base d’oxyde de fer superparamagnĂ©tique. Le second volet de ce travail s’est portĂ© sur la validation de notre mĂ©thode d’évaluation, et sur le dĂ©veloppement de la quantification du dĂ©pĂŽt d’aĂ©rosols. Nous avons enfin pu tester la reproductibilitĂ© de notre mĂ©thode d’évaluation du dĂ©pĂŽt in vivo chez le rat, grĂące Ă  la rĂ©alisation d’une plateforme de ventilation et d’administration de gaz et d’aĂ©rosols dĂ©diĂ©e, SAGAS.Inhalation therapy has broadened its field of application over the last two decades by considering the lung not only as an organ to cure, but also as a portal toward systemic circulation. This new approach is being made possible by the emergence of biotherapeutics and a greater understanding of the absorption properties of the lung. Systemic delivery across the oronasal route was then investigated for a number of indications including migraine, diabetes, pain, and cancer. However, progress into the market of systemic aerosolized drug delivery has been slowed down to-date by a number of confounding factors including rapid clearance, instability, long-term toxicity, and dosing issues. Final drug distribution in such complex geometries strongly depends on a variety of parameters like the aerosol administration protocol, particle size, density, and physicochemical properties, as well as the airway geometry. Independently of drug formulation and pharmacokinetic considerations, these parameters determine the deposition distribution throughout the lung. Quantification and spatial localization are primordially needed to better control and optimize drug concentration at specific or less- and nonspecific sites. Nuclear medicine techniques are currently the only available modalities that combine both aerosol quantification and regional localization. They are considered as reference techniques even though they remain limited by their spatial and temporal resolutions as well as by patient exposure to radiations. With regard to lung imaging, hyperpolarized helium-3 MRI has been developed as a powerful tool to quantitatively characterize the parenchyma and the organ function and morphology. The technique is innocuous and provides millimeter and sub-second resolutions with rather high signal to noise ratios. In this thesis, a new imaging modality was developed on the grounds of hyperpolarized helium-3 MRI to probe and quantify aerosol deposition in the airways. In the first part of the thesis, I describe the potential of helium-3 MRI to probe aerosol deposition by using superparamagnetic contrast agents. The second part mainly focuses on the validation of this new modality by comparing it to a reference technique, single photon emission computed tomography (SPECT), and computational fluid dynamics. The last part of the manuscript is dedicated to aerosol administration and in vivo measurements in rat lungs. This experiment was possible by designing and building an MR compatible gas administrator and ventilator dedicated to small animals, SAGAS (Small Animal Gas Administration System). Its complete hardware and software description is presented in the same chapter
    • 

    corecore