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Nanodiamonds are of interest as nontoxic substrates for targeted drug delivery and as highly

biostable fluorescent markers for cellular tracking. Beyond optical techniques, however,

options for noninvasive imaging of nanodiamonds in vivo are severely limited. Here, we

demonstrate that the Overhauser effect, a proton–electron polarization transfer technique,

can enable high-contrast magnetic resonance imaging (MRI) of nanodiamonds in water at

room temperature and ultra-low magnetic field. The technique transfers spin polarization

from paramagnetic impurities at nanodiamond surfaces to 1H spins in the surrounding water

solution, creating MRI contrast on-demand. We examine the conditions required for

maximum enhancement as well as the ultimate sensitivity of the technique. The ability to

perform continuous in situ hyperpolarization via the Overhauser mechanism, in combination

with the excellent in vivo stability of nanodiamond, raises the possibility of performing

noninvasive in vivo tracking of nanodiamond over indefinitely long periods of time.
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N
anoparticles are rapidly emerging as powerful theranostic
substrates1 for the targeted delivery of vaccines2,
chemotherapy agents3, immunotheraputics4, and as a

means of tracking tumour distribution on whole-body scales5,6.
Biocompatible nanodiamonds (NDs) are ideal examples,
featuring surfaces that are readily functionalized to enable tissue
growth and their selective uptake by disease processes7–10.
Imaging NDs in vivo has been mostly limited to subcellular
environments that are optically accessible11,12. Without imaging
modalities beyond optical fluorescence realization of the full
theranostic potential of ND to track and investigate complex
disease processes, such as metastatic disease, is unlikely.

Magnetic resonance imaging (MRI) is the gold standard for
noninvasive high-contrast imaging, but has proven ineffective for
directly detecting NDs in vivo due to the low abundance and
small gyromagnetic ratio of spin-1/2 13C nuclei that comprise the
carbon lattice. Dynamic nuclear polarization (DNP) of the 13C
nuclei at cryogenic temperatures can, in principle, overcome the
inherently small nuclear spin polarization of diamond by
boosting it some 10,000 times to enable MRI contrast from
nanoparticle compounds13–16. Despite these prospects,
hyperpolarized nuclei relax to their thermal polarization in a
time that, for submicron particles, is short enough to limit the
usefulness of the method in an imaging context13,17.

An alternative approach to tracking ND relies on functionaliz-
ing the ND surface with paramagnetic Gd(III) chelates to create
complexes for imaging with conventional T1-weighted MRI18.
However, this approach faces the challenges of a large
background signal, and concern for the long-term toxicity of
gadolinium-based compounds19.

Here, we demonstrate a different means of imaging and
tracking water–ND solutions using Overhauser-enhanced MRI
(OMRI)20–23. Operation at ultra-low magnetic field (ULF)
enables efficient Overhauser polarization transfer between
electronic and nuclear spins in a radio frequency (RF) regime
compatible with in vivo use. RF pulsing of the electron
paramagnetic resonance (EPR) transition between MRI signal
acquisitions continually transfers spin polarization from the
paramagnetic centres at the surface of ND to 1H nuclei in the
surrounding water24. The presence of ND in the solution thus
leads to an enhancement in the 1H MRI signal that can readily
produce images with contrast sensitive to ND concentrations.
The ability to perform in situ hyperpolarization overcomes the
limitations imposed by short spin relaxation times of smaller
particles and enables switchable tracking of ND solutions with
no polarization transport losses over indefinite timescales. In
addition to producing images to demonstrate this new approach,
we investigate the conditions that lead to maximum sensitivity to
the presence of ND, presenting data characterizing the efficiency
of the Overhauser mechanism as a function of particle
concentration and size. These results significantly enhance the
theranostic capabilities of non-toxic, biofunctionalized ND,
opening the possibility that MRI can be used to monitor and
track ND compounds in vivo.

Results
The Overhauser effect in ND solutions. Various types of
ND were used in this study, including high-pressure high-
temperature (HPHT), natural (NAT) and detonation (DET) NDs
in sizes from 4 to 125 nm. We focus on results obtained from
HPHT 18 nm and HPHT 125 nm NDs as typical representatives
of the general behaviour observed. An air oxidization process,
known to etch the ND surface, produces additional variants of
NDs for comparison with the commercially sourced varieties25.
Aqueous solutions of ND in deionized (DI) water were prepared

using high-power probe sonication, with HPHT NDs exhibiting
the most stability in solution. HPHT 125 nm solutions show no
aggregation over a period of months and a zeta potential of
� 55 mV (see Methods for further details on ND preparation as
well as Supplementary Note 1 and Supplementary Fig. 1a for zeta
potential measurements).

The basis for detecting and imaging ND in solution is shown in
Fig. 1a. Image contrast arises from the Overhauser effect, which
as a starting point requires a reservoir of partially polarized
electron spins26. Driving these electrons with a resonant AC
magnetic field transfers spin polarization to the interacting 1H
nuclei in the surrounding solution27,28. NDs provide such a
reservoir in the form of paramagnetic impurities such as
nitrogen vacancy centres, substitutional nitrogen (P1) centres
and unpaired electrons at the nanoparticle surface29,30.
We first characterize our NDs using EPR spectroscopy,
determining their impurity content and suitability for
Overhauser imaging.

The EPR spectra of our HPHT 18 nm ND solution is shown in
Fig. 1b and is fit by a two-component spin-1/2 model comprising
a broad (1.2 mT) component and a narrow (0.2 mT) component
(solid lines in figure)31. Air oxidation of NDs reduces the
amplitude of the broad component in the spectra, as shown in
Fig. 1c, presumably by removing the paramagnetic centres at the
surface. Our results are consistent with previous studies
suggesting that the broad component is due to disordered
dangling bonds at the surface of the ND with the narrow
component arising from lattice defects in the crystalline core32.
Other types of ND studied here demonstrate similar spectral
components (see Supplementary Fig. 2 for further EPR data).

Having established that ND provides a paramagnetic reservoir
suitable for the Overhauser effect, we turn now to address the
additional conditions that must be satisfied to enable imaging.
In Fig. 1d we show the energy level diagram of a system
comprising an electron coupled to a 1H nucleus in an external
magnetic field. When the EPR transition is pumped, the relative
sizes of the cross relaxation transitions w0 and w2 will cause nuclei
to accumulate in spin up or down states. This accumulation gives
a nuclear enhancement E, defined as the ensemble average of the
z-component of the nuclear magnetization Mz over the nuclear
magnetization under thermal equlibrium conditions M0, that is,
E¼ Mzh i=M0. The enhancement generated by the Overhauser
mechanism is a function of four parameters33:

E¼1� rfs
gej j
gn

ð1Þ

where r is the coupling factor between electron and nuclear spins,
f the leakage factor, s the saturation factor and ge and gn are the
electron and nuclear gyromagnetic ratios. Addressing first the
coupling factor, r, we note that when there is dipolar coupling
but no hyperfine contact interaction between spins, r takes a
positive value determined by the correlation time of the two spins,
diffusion coefficients and the EPR frequency. Relatively long
correlation times are expected at ND surfaces due to the
formation of a nanophase of water with 1 nm thickness at the
ND–water interface34. Assuming free diffusion of water at a
distance of 1 nm from the ND surface, we follow refs 35–38 and
plot the field dependence of r for a calculated correlation time of
430 ns, as shown in Fig. 1e (see Supplementary Note 2 for details
of calculation). Not surprisingly, given the long correlation time
between spins, increasing the magnetic field above a few
milli-Tesla rapidly suppresses the mutual flip–flip of dipolar
coupled electron and nuclear spins and thus the nuclear
enhancement possible via the Overhauser effect. Our choice of
magnetic field for Overhauser imaging is thus constrained to the
ULF regime, where serendipitously the frequency of the EPR field
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produces minimal heating from dielectric loss associated with
water at 20 �C (ref. 39). Figure 1e also explains why previous DNP
studies of ND solutions at 340 mT did not show Overhauser
enhancement of freely diffusing water molecules in the bulk
solution40. Instead, they showed solid effect DNP of 1H nuclei
adsorbed to the ND surface.

To demonstrate that NDs can be detected via the Overhauser
effect at ULF, we set B0¼ 6.5 mT and apply an RF magnetic field
at the EPR frequency of 190 MHz to an HPHT 125 nm,
100 mg ml� 1 sample. The 1H signal from the water surrounding
the ND is then detected through standard inductive nuclear
magnetic resonance (NMR) techniques after the 1H system has
reached equilibrium (see Methods). Under these conditions, we
observe an enhancement of � 4.0 in the 1H spin polarization
when EPR power is applied, as shown in Fig. 2a.

Examining the enhancement produced by different types of
ND, Fig. 2b shows the sensitivity of the Overhauser technique to
nanoparticle concentration. We draw attention to the data for the
HPHT 18 nm NDs, which indicates that at concentrations of
1 mg ml� 1, a 33% change in 1H polarization of the solution
can be observed. Natural NDs produce a small enhancement
relative to HPHT NDs, probably due to a relatively low
concentration of paramagnetic defects, as seen in their EPR
spectra (see Supplementary Fig. 2 for spectra).

Having demonstrated that Overhauser enhancement is possible
with ND, we return to equation (1) to further consider the
conditions needed for optimal imaging. The saturation factor s
describes the proportion of the EPR linewidth that is driven and
takes a maximum value of 1 when the electron transitions are
completely saturated at high RF power. To measure the EPR
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Figure 1 | Mechanism of the Overhauser effect in ND solutions. (a) Schematic of the Overhauser effect at the ND–water interface. (b) X-band EPR

spectra of high-pressure high-temperature (HPHT) 18 nm NDs in 100 mg ml� 1 solutions of DI water (blue). Two-spin model fit (dark blue) is the sum of a

broad spin-1/2 component (green) and a narrow spin-1/2 component (brown). (c) X-band EPR spectra of air-oxidized HPHT 18 nm NDs in 100 mg ml� 1

solutions of DI water (orange). Two-spin model fit (dark blue) is the sum of a broad spin-1/2 component (green) and a narrow spin-1/2 component

(brown). The broad component is reduced by air oxidation. (d) Zeeman split electron and nuclear spin levels in a magnetic field. Zero-quantum (w0),

single-quantum (w1) and double-quantum transitions (w2) are shown. If the w2 transition dominates, when the EPR transition is driven with a RF field, there

is a net movement to the #e#1Hj i state. (e) Coupling factor r as a function of magnetic field (B0) for a translational correlation time (tc) of 430 ns.
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linewidth at ULF, we sweep B0 while driving electron transitions
at 140 MHz. As shown in Fig. 2c, HPHT 18 nm and HPHT
125 nm solutions show a linewidth for the enhancement of
B0.3 mT at a frequency consistent with the gyromagnetic ratio of
a free electron. This result indicates that the paramagnetic centres
responsible for the Overhauser effect can be fully saturated with a
resonant AC magnetic field of magnitude 1 mT, which is easily
achieved in our spectroscopic probe41. Accordingly, we observe
that, for EPR powers above 30 W, the Overhauser enhancement
saturates, (shown in Supplementary Fig. 1b), and the maximal
saturation factor is reached.

The remaining parameter in equation (1) is the leakage factor f,
which describes how effectively electrons relax the nuclear spin
environment, taking a maximum value of 1 when all nuclear spin
relaxation is via the paramagnetic solute. The leakage factor of a

given solution can be calculated from:

f¼1� T1

T01
ð2Þ

where T1 is the spin–lattice relaxation time of 1H spins in ND
solution, shown in Fig. 2d, and T01 is the spin–lattice relaxation
time of the undoped solvent26. We note that ND solutions with
shorter T1, and hence larger f, do not necessarily give a higher
Overhauser enhancement as equation (1) would predict. For
example, NAT 125 nm NDs show a T1 relaxivity more than
double that of HPHT 125 nm NDs, despite showing a much
smaller enhancement in Fig. 2b. Presumably, r is suppressed in
the quasistatic nanophase by slow diffusion of water molecules
and the increased paramagnetic nuclear relaxation rate40.
1H nuclei ‘trapped’ in the nanophase will experience rapid
spin–lattice relaxation, giving the f we observe and an overall
enhancement that depends on the specifics of each ND surface.
A detailed understanding of dynamics in the nanophase
compared to freely diffusing bulk water is thus crucial to
calculation of the factors in equation (1) (see Supplementary Note
3 for further discussion).

Solutions prepared with air-oxidized ND consistently exhibit
reduced enhancements and higher T1 relaxivity, as shown for
18 nm HPHT air-oxidized NDs in Fig. 2b,d. The increased
nuclear spin–lattice relaxation rate will contribute to a reduction
in Overhauser enhancement and we speculate that the
enhancement is further reduced due to a lower concentration of
paramagnetic centres after removal of surface impurities by air
oxidation.

Overhauser-enhanced MRI with ND. With conditions that lead
to a significant Overhauser enhancement now established, we
demonstrate this approach as the basis for detecting ND solutions
using ultra-low-field MRI. Imaging is performed using a custom
proton–electron, double resonant probe in an open-access,
low-field, human MRI scanner operating at a B0 of 6.5 mT
(ref. 42). To display the MRI contrast possible between a ND
solution and water we make use of the phantom illustrated in
Fig. 3a, which consists of glass vials filled with 500 ml of either DI
water or aqueous solutions of HPHT 125 nm ND at 100 mg ml� 1

and is organized in a diamond-shaped pattern.
MRI at ultra-low field of the phantom was performed using a

high-efficiency balanced steady-state free precession (bSSFP) MRI
sequence in which 1/3 of the imaging time is spent acquiring
signal (see Methods for details)43. Although good spatial
resolution is achieved, no discernible contrast is evident
between ND solution vials and water vials, as shown in Fig. 3b.
This is not surprising given that contrast using the bSSFP
sequence is produced via 1H concentration weighted by the ratio
T2/T1, which is approximately equal for all vials in the phantom
(see Fig. 2d for T1 and Supplementary Fig. 1c for T2). We note
that obtaining relaxation contrast with bSSFP at ULF is usually
challenging, as when B0-0, it is a general result that T2/T1-1
(ref. 44).

The phantom was then imaged with an OMRI bSSFP sequence,
as shown in Fig. 3c. The OMRI bSSFP sequence is equivalent to
the regular bSSFP sequence, except the EPR transition of the ND
solution is driven during the phase encode period24. The
maximum time period without Overhauser saturation in our
OMRI bSSFP sequence is 28 ms. As this is much shorter than the
T1 and T2 of the ND solution, the polarization approaches a
steady state during OMRI bSSFP, ensuring that hyperpolarized
signal is continually present for acquisition. The appearance of
water vials in the OMRI bSSFP image is unchanged from the
regular bSSFP image. However, the ND solutions demonstrate
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Figure 2 | Overhauser effect in ND solutions. (a) NMR spectra acquired at

276 kHz demonstrating Overhauser enhancement of 1H polarization in an

HPHT 125 nm 100 mg ml� 1 ND solution. The hyperpolarized 1H spectrum

(red) is enhanced by �4.0 over the thermal 1H spectrum (blue). The

enhanced spectrum was acquired after the EPR transition had been driven

for 1.5 s with 49 W of RF power at 190 MHz. (b) 1H saturation enhancement

versus concentration for ND solutions at 6.5 mT, with EPR saturation of

49 W at 190 MHz. The Overhauser effect was observed for HPHT (blue—

18 nm; yellow—125 nm), NAT 125 nm (green), DET (red) and air-oxidized

HPHT 18 nm NDs (orange). Lines are included as a guide to the eye.

Arrow indicates the change in enhancement after air oxidation. (c) 1H

enhancement versus B0 with EPR pumping at a constant frequency of

140 MHz with 24 W of power. 1H NMR detection was performed on

resonance. Aqueous solutions of HPHT 18 nm (blue) and HPHT 125 nm

(yellow) at 50 mg ml� 1 concentration were used. Solid lines are included as

a guide to the eye. (d) T1 relaxation times of ND solutions at 6.5 mT. Lines

are a fit to the concentration-dependent relaxivity equation. The fit error on

individual T1 measurements is smaller than the marker size. Arrow indicates

the change in relaxivity after air oxidation. The T1 relaxivity coefficients are

4.5±0.2� 10� 2 ml s� 1 mg� 1 for HPHT 18 nm (blue),

1.9±0.2� 10� 2 ml s� 1 mg� 1 for HPHT 125 nm (yellow),

5.2±0.2� 10� 2 ml s� 1 mg� 1 for NAT 125 nm (green),

1.0±0.1� 10� 1 ml s� 1 mg� 1 for DET (red) and

2.3±0.2� 10� 1 ml s� 1 mg� 1 for air-oxidized HPHT 18 nm (orange).
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significant relative contrast, with a change in magnitude and
inversion of signal phase, as a result of the negative enhancement
from the Overhauser effect. The switchable nature of the
Overhauser contrast allows us to take the difference of the
signal in MRI and OMRI images to generate the image in Fig. 3d.
Such a difference image suppresses the background signal, clearly
showing the spatial distribution of NDs.

Having demonstrated ND imaging with OMRI, we now
consider the sensitivity of the technique in our current Over-
hauser setup. We calculate the signal-to-noise ratio (SNR) as the

magnitude of the MRI signal in a region of interest divided by the
root mean square value of the background signal. In Fig. 4a we
show the schematic of a phantom containing vials with various
concentrations of HPHT 18 nm ND in a container of water. This
phantom is imaged with bSSFP, as shown in Fig. 4b. The vials in
this image have an SNR of 43, with the glass vial walls clearly
outlining their positions. Next, we define the contrast-to-noise
ratio (CNR) as the difference in signal between MRI and OMRI
scans in a region of interest divided by the root mean square value
of the background signal. Taking the subsequent Overhauser
scan, shown in Fig. 4c and resulting difference image, shown in
Fig. 4d, clearly shows the presence of ND at concentrations of 10,
3 and 1 mg ml� 1 with CNR values of 27, 18 and 9, respectively.

Images of the 1 mg ml� 1 vial in Fig. 4 were acquired with 23mg
of ND per pixel, or a particle molar sensitivity of 150 nM for
18 nm particles. We note that this particle mass sensitivity is
equivalent to that reported for other hyperpolarized MRI particle
imaging modalities17.

Discussion
NDs are non-toxic at high concentrations and resist in vivo
degradation for periods of over a month45. Thus, the results
presented here illustrate the potential of ND OMRI as a practical
methodology for long-term biological imaging, providing new
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types of contrast and functionality. All imaging was performed on
systems designed for in vivo OMRI with RF powers acceptable for
use in vivo46, raising the possibility of biological applications.
In particular, NDs may be of diagnostic use for diseased organs
where nanoparticle accumulation can be an effective marker
of pathology, such as the brain47, liver48 and lymph nodes2.
Current diagnostic methodologies, using the T�2 properties of iron
oxide nanoparticles49, suffer from the long biodistribution times
of nanoparticles as the precomparison scan is taken before
nanoparticle administration. In the resulting interval before a
postcomparison scan various types of biological noise are
introduced that make difference imaging infeasible50. The
ability to perform interleaved MRI and OMRI scans with ND
could overcome this limitation.

We have demonstrated sensitivity to ND at concentrations as
low as 1 mg ml� 1. An upgraded version of our scanner with
higher strength imaging gradients will enable slice selection
without compromise to the bSSFP acquisition protocol. Hence,
we now anticipate sensitivity changes from the implementation of
slice selection. The SNR in a slice-selected image is given by
SNR¼kVvoxel

ffiffiffiffiffiffiffi

tacq
p

, where Vvoxel is the volume of a voxel, tacq is
the total acquisition time and k is a constant that depends on the
magnetic field strength, hardware sensitivity, imaging sequence
and acquisition parameters as well as the composition and
spin–relaxation properties of the material being imaged51.
Hence, based on the measurements in Fig. 4, for the same
acquistion time and slice selection in a 5 mm slab with
1 mm� 1 mm pixel size, we calculate that HPHT 18 nm ND at
1 mg ml� 1 will be on the threshold of detectability with a CNR of
2. For higher nanoparticle concentrations, imaging times could be
significantly accelerated. For example, HPHT 18 nm ND at
10 mg ml� 1 will have a CNR of 2, with 5 mm3 voxels and a total
MRI and OMRI acquisition time of 2.5 min.

The long-term clearance of nanoparticles is of interest for
assessing biocompatibility. Studying the retention of NDs in the
liver at present requires organ harvesting, which limits long-term
studies45,52. We estimate that for NDs to be present at 1 mg ml� 1

in a 3 ml mouse liver53 would require injection of 5 mg of ND
into a 20 g mouse, assuming 60% accumulation in the liver53,54.
This dose is significant as it is a factor of 30 lower than that used
in a recent in vivo demonstration of hyperpolarized silicon
microparticle imaging17. Nanoparticle accumulation could be
noninvasively imaged at this concentration with 5 mm3 voxels in
the 3,000 mm3 liver. This would provide a long-term probe of the
fate of nanoparticles in the liver, with significant scope for
increasing the voxel size or acquisition time if increased
sensitivity is required.

Given that nanoparticles about 25 nm in size are known to
preferentially accumulate only in healthy lymphatic tissue2, the
ability to detect and image ND with OMRI may also enable
isolation of disease in swollen lymph glands, avoiding the need
for biopsy55–57. Such a technique could prove useful for the
diagnosis of lymph node tumours, which is vital to the treatment
of metastatic prostate cancer6.

The 1H enhancement we observe with the Overhauser
effect is approximately two orders of magnitude larger, when
accounting for ND concentration, than seen with solid effect
hyperpolarization of water molecules adsorbed to ND surfaces40.
Further, there is potential to increase the Overhauser
enhancement towards the theoretical maximum of � 330
(ref. 26), over 80 times larger than seen here, by modification
of the ND surface. Tailored NDs with impurities selected to
remove alternate spin–lattice relaxation mechanisms could be
surface treated to increase diffusion of water at the nanosolid–
liquid interface58,59, maximizing the coupling and leakage factors
in equation (1). Likely, other nanoparticles that display the

Overhauser effect in solution also exist. However, identification of
these nanoparticles is nontrivial because of significant variation in
the surface defects and the hydrophilicity of nanoparticles.

As Overhauser contrast arises via interactions at the
nanoparticle surface, we recognize that surface functionalization
for targeted molecular imaging must complement the observed
enhancement. In this way, therapeutic agents attached to the
surface could suppress the Overhauser effect by increasing the
distance between radicals at their surface and free water, leaving
them ‘dark’ in OMRI scans60. After targeted drug release, the
Overhauser effect could return to normal, showing up ‘bright’
with OMRI and enabling effective tracking of the site of drug
delivery. The dependence of Overhauser enhancement on
diffusion may also allow the technique to be used as a probe of
localized hydration dynamics35. The OMRI approach may also
enable the hyperpolarization of fluids flowing across the surface
of diamond nanostructures61–63.

In conclusion, we have used recent advances in ULF MRI to
extend the usefulness of OMRI to nanoparticle imaging. The
ability to noninvasively image biocompatible NDs with switchable
contrast at biologically relevant concentrations is promising for a
range of diagnostic applications. Switchable contrast allows
suppression of the background signal present in other T1- and
T2-based nanoparticle MRI modalities18,64,65. Furthermore,
the long-term biological stability of NDs in vivo, as well as the
unlimited repeatability of the hyperpolarization sequence, raises
the possibility of imaging metabolic processes over dramatically
longer timescales than is possible with ex situ hyperpolarization
techniques13,17.

Methods
ND solution preparation. NDs used in this study were sourced from
Microdiamant (Switzerland). ND types used were: monocrystalline, synthetic
HPHT NDs in 18 nm (0–30 nm, median diameter 18 nm) and 125 nm (0–250 nm,
median diameter 125 nm) sizes; monocrystalline, 125 nm NAT NDs (0–250 nm,
median diameter 125 nm); and polycrystalline DET ND (cluster size 250–1,000 nm,
median 500 nm; individual particle size 4–8 nm). Size specifications were provided
by the manufacturer. Air-oxidized NDs were prepared by placing them in a furnace
at standard pressure for 1 h at 550 �C after an initial temperature ramp25.
ND samples were mixed with DI water and sonicated with a Branson probe
sonicator at 120 W and 50% duty cycle for 40 min to disaggregate ND clusters.

Particle size and zeta potential measurements were performed on ND solutions
in a Beckman Coulter Delsa Nano C Particle Analyzer. Particle size measurements
confirmed that monocrystalline NDs were well dispersed in water after sonication.
Particle sizes of monocrystalline NDs were found to be consistent with
manufacturer specifications. DET NDs still displayed some clustering and
inconsistent particle size in solution after probe sonication.

EPR measurements. CW EPR measurements were performed on 100 mg ml� 1

ND samples in a Bruker ElexSys E500 EPR system. Modulation frequency was
100 kHz at an amplitude of 0.1 G and incident microwave power of 0.6725 mW.
Sample volumes in the cavity were kept consistent to allow comparison of relative
peak heights. Individual EPR components were simulated in EasySpin31 and a
least-squares analysis was used to find the best fit to the data while varying g-factor,
linewidth and amplitude.

Spectroscopic measurements at 6.5 mT. The 1H enhancement of ND solutions
was measured by saturating the EPR transition at 190 MHz for a period of 5T1

using 31 W of RF power before a standard NMR FID acquisition at 276 kHz. The
enhancement is given as the ratio of the magnitude of the hyperpolarized FID
to the magnitude an FID taken at thermal equilibrium with no EPR power.
A high filling factor Alderman–Grant resonator was used for EPR with a solenoid-
producing orthogonal B1 used for NMR detection. T1 relaxation times were
measured using a conventional inversion recovery acquisition and fit with a least-
squares analysis.

DNP linewidth measurements. The linewidth of the Overhauser effect was
studied by measuring the 1H enhancement at various magnetic field strengths
while driving the EPR resonator at a frequency of 140 MHz and 25 W. The EPR
frequency was lowered from 190 MHz to capture the enhancement profile either
side of the peak without exceeding the maximum field accessible in our ULF
magnet. 1H enhancement was measured as the magnetic field was stepped between
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4 and 7 mT. NMR detection was performed at the 1H resonance for any given field
strength, with a low Q solenoidal coil.

Overhauser-enhanced MRI. Imaging was performed at 6.5 mT in our ultra-low-
field MRI scanner42 using a bSSFP OMRI sequence at room temperature24.
The homebuilt imaging probe consists of an Alderman–Grant resonator (EPR:
190 MHz) and a solenoid (1H: 276 kHz). The EPR resonator was pulsed on during
the phase encode steps, with 69 W delivered to the EPR resonator at a duty cycle of
52%. Gradient strength was a maximum of 1 mT m� 1 (see Supplementary Note 4
and Supplementary Fig. 3 for further imaging sequence and probe details).
Images in Figs 3 and 4 were acquired with a 256� 40 matrix size and cropped.
Data were acquired in two dimensions with a pixel size of 1.0 mm� 0.76 mm over
a 30 mm� 30 mm field of view and interpolated by zero filling and Gaussian
filtering in k-space to give 0.25 mm� 0.19 mm pixels. The phantom thickness was
20 and 30 mm in Figs 3 and 4, respectively. The standard MRI images were
acquired with 200 averages (11 min 24 s). The OMRI images in Figs 3c and 4c were
acquired with 80 averages (4 min 14 s) and 200 averages (11 min 24 s), respectively.
Image magnitude was scaled for an accurate comparison between scans with
different numbers of averages. Pixels in Fig. 4 with a magnitude less than five times
the root mean square value of the background signal were thresholded to zero.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information. Raw data
is available from the corresponding author on request.
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