7 research outputs found

    Tumor-related interleukins: old validated targets for new anti-cancer drug development

    No full text
    Abstract In-depth knowledge of cancer molecular and cellular mechanisms have revealed a strong regulation of cancer development and progression by the inflammation which orchestrates the tumor microenvironment. Immune cells, residents or recruited, in the inflammation milieu can have rather contrasting effects during cancer development. Accumulated clinical and experimental data support the notion that acute inflammation could exert an immunoprotective effect leading to tumor eradication. However, chronic immune response promotes tumor growth and invasion. These reactions are mediated by soluble mediators or cytokines produced by either host immune cells or tumor cells themselves. Herein, we provide an overview of the current understanding of the role of the best-validated cytokines involved in tumor progression, IL-1, IL-4 and IL-6; in addition to IL-2 cytokines family, which is known to promote tumor eradication by immune cells. Furthermore, we summarize the clinical attempts to block or bolster the effect of these tumor-related interleukins in anti-cancer therapy development

    Combination Therapy of PEG-HM-3 and Methotrexate Retards Adjuvant-Induced Arthritis

    No full text
    At present, the early phenomenon of inflammatory angiogenesis is rarely studied in Rheumatoid arthritis (RA). Previous research found that PEG-HM-3, an integrin inhibitor, possessed anti-angiogenesis and anti-rheumatic activity. In this study, the advantages of inhibiting angiogenesis and immune cell adhesion and migration, as well as the benefits of anti-arthritis effects, were evaluated using a combination of PEG-HM-3 and methotrexate (MTX). In vitro, spleen cell proliferation and the levels of tumor necrosis factor α (TNF-α) in macrophage supernatant were assessed. Hind paw edema, arthritis index, clinical score, body weight and immunohistochemistry (IHC) of the spleen, thymus, and joint cavity were evaluated in vivo in adjuvant-induced arthritis rats. Joints of the left hind paws were imaged by X-ray. The expression of the toll-like receptor 4 (TLR-4) protein was assessed in lipopolysaccharide (LPS)-induced synoviocytes. PEG-HM-3 combined with MTX significantly reduced primary and secondary swelling of the hind paws, the arthritis index, the clinical score and bone erosion. The results of IHC showed that the levels of interleukin-6 (IL-6) in spleens and the levels of TNF-α, CD31 (cluster of differentiation 31), and CD105 in the joint cavity were decreased. The body weight of rats was maintained during combination therapy. Ankle cavity integrity, and bone erosion and deformity were improved in combination treatment. The expression of TLR-4 was significantly reduced with combination treatment in rat synoviocytes. Co-suppression of both inflammation and angiogenesis in arthritis was achieved in this design with combination therapy. The activity of nuclear transcription factor (NF-κB) and the expression of inflammatory factors were down regulated via integrin αvβ3 and TLR-4 signaling pathways. In the future, the application of this combination can be a candidate in early and mid-term RA therapy

    Accurate control of dual-receptor-engineered T cell activity through a bifunctional anti-angiogenic peptide

    No full text
    Abstract Background Chimeric antigen receptors (CARs) presented on T cell surfaces enable redirection of T cell specificity, which has enormous promise in antitumor therapy. However, excessive activity and poor control over such engineered T cells cause significant safety challenges, such as cytokine release syndrome and organ toxicities. To enhance the specificity and controllable activity of CAR-T cells, we report a novel switchable dual-receptor CAR-engineered T (sdCAR-T) cell and a new switch molecule of FITC-HM-3 bifunctional molecule (FHBM) in this study. Methods We designed a fusion molecule comprising FITC and HM-3. HM-3, an antitumor peptide including an Arg-Gly-Asp sequence, can specifically target integrin αvβ3 that is presented on some tumor cells. Moreover, to improve the specificity of CAR-T cells, we also generated the sdCAR-T cell line against cognate tumor cells expressing human mesothelin (MSLN) and integrin αvβ3. Finally, the activity of sdCAR-T cell and FHBM is verified via in vitro and in vivo experiments. Results In the presence of FHBM, the designed sdCAR-T cells exerted high activity including activation and proliferation and had specific cytotoxicity in a time- and dose-dependent manner in vitro. Furthermore, using a combination of FHBM in nude mice, sdCAR-T cells significantly inhibited the growth of MSLN+ K562 cells and released lower levels of the cytokines (e.g., interleukin-2, interferon γ, interleukin-6, and tumor necrosis factor α) relative to conventional CAR-T cells, obtaining specific, controllable, and enhanced cytotoxicity. Conclusions Our data indicate that FHBM can accurately control timing and dose of injected CAR-T cells, and sdCAR-T cells exert significant antitumor activity while releasing lower levels of cytokines for the cognate tumor cells expressing both MSLN and integrin αvβ3. Therefore, combination therapies using sdCAR-T cells and the switch molecule FHBM have significant potential to treat malignancies

    Additional file 1: of Accurate control of dual-receptor-engineered T cell activity through a bifunctional anti-angiogenic peptide

    No full text
    Figure S1. Identification of sdCAR structure gene in sdCAR-engineered T cells. Figure S2. Detection of cognate and non-cognate antigen expression on K562 cells or HT29 cells. Figure S3. Expression levels of CD69 on activated CAR-T cells. Figure S4. Representative fluorescence images of cognate antigen and non-cognate target cells after a 22-h incubation with sdCAR-T cells or MÎśBB CAR-T cells. Figure S5. sdCAR-T cell function was strictly dependent on FHBM. Figure S6. Schematic representation of flow cytometry-based target cell killing assay in vivo. Figure S7. The cytokine levels over time in mice after injection of modified-T cells. Figure S8. Calculate the value of the half-life of FHBM. Figure S9. sdCAR-T cell cytotoxicity for solid tumor in xenograft. (DOCX 20379 kb
    corecore