69 research outputs found

    RNxQuest: An Extension to the xQuest Pipeline Enabling Analysis of Protein–RNA Cross-Linking/Mass Spectrometry Data

    Get PDF
    Cross-linking and mass spectrometry (XL-MS) workflows are increasingly popular techniques for generating low-resolution structural information about interacting biomolecules. xQuest is an established software package for analysis of protein–protein XL-MS data, supporting stable isotope-labeled cross-linking reagents. Resultant paired peaks in mass spectra aid sensitivity and specificity of data analysis. The recently developed cross-linking of isotope-labeled RNA and mass spectrometry (CLIR-MS) approach extends the XL-MS concept to protein–RNA interactions, also employing isotope-labeled cross-link (XL) species to facilitate data analysis. Data from CLIR-MS experiments are broadly compatible with core xQuest functionality, but the required analysis approach for this novel data type presents several technical challenges not optimally served by the original xQuest package. Here we introduce RNxQuest, a Python package extension for xQuest, which automates the analysis approach required for CLIR-MS data, providing bespoke, state-of-the-art processing and visualization functionality for this novel data type. Using functions included with RNxQuest, we evaluate three false discovery rate control approaches for CLIR-MS data. We demonstrate the versatility of the RNxQuest-enabled data analysis pipeline by also reanalyzing published protein–RNA XL-MS data sets that lack isotope-labeled RNA. This study demonstrates that RNxQuest provides a sensitive and specific data analysis pipeline for detection of isotope-labeled XLs in protein–RNA XL-MS experiments

    Clinical Improvement Following Stroke Promptly Reverses Post-stroke Cellular Immune Alterations

    Get PDF
    Background and Purpose: Stroke induces immediate profound alterations of the peripheral immune system rendering patients more susceptible to post-stroke infections. The precise mechanisms maintaining stroke-induced immune alterations (SIIA) remain unknown. High-Mobility-Group-Protein B1 (HMGB-1) is elevated for at least 7 days post-stroke and has been suggested to mediate SIIA. Patients with rapid clinical recovery of neurological deficits rarely develop severe infections. We therefore investigated whether rapid neurological recovery (either spontaneous or secondary to neurovascular recanalization therapy) alters the course of SIIA. National Institutes of Health Stroke Scale (NIHSS) served as surrogate marker for neurological improvement.Methods: Fluorescence-activated cell sorting was used to define leukocyte subpopulations. C-reactive protein (CRP), procalcitonin (PCT), HMGB-1, GM-CSF; IFN-β, IFN-γ, IL-1β, IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-17, IL-17F, IL-18, TNF-α, MIF, IL-8, MCP-1, MCP-4, MIP-3α, MIP-3β, Eotaxin, soluble IL-6 receptor, E-selectin, and P-selectin were analyzed by ELISA or Multiplex Assays. Serum miRNA expression changes were analyzed by qPCR.Results: Cellular parameters were similar in the improved and non-improved cohort on admission. In patients with rapid clinical recovery absolute and relative leukocyte, neutrophil, and lymphocyte numbers normalized promptly overnight. In contrast, HMGB-1 serum levels did not differ between the two groups. Nine miRNA were found to be differentially expressed between improved and non-improved patients.Conclusions: SIIA are detectable on admission of acute stroke patients. While it was assumed that post-stroke immunosuppression is rapidly reversed with improvement this is the first data set that shows that improvement actually is associated with a rapid reversal of SIIA demonstrating that SIIA require a constant signal to persist. The observation that HMGB-1 serum concentrations were similar in improved and non-improved cohorts argues against a role for this pro-inflammatory mediator in the maintenance of SIIA. Serum miRNA observed to be regulated in stroke in other publications was counter regulated with improvement in our cohort

    Reduced Numbers and Impaired Function of Regulatory T Cells in Peripheral Blood of Ischemic Stroke Patients

    Full text link
    Background and Purpose. Regulatory T cells (Tregs) have been suggested to modulate stroke-induced immune responses. However, analyses of Tregs in patients and in experimental stroke have yielded contradictory findings. We performed the current study to assess the regulation and function of Tregs in peripheral blood of stroke patients. Age dependent expression of CD39 on Tregs was quantified in mice and men. Methods. Total FoxP3+ Tregs and CD39+FoxP3+ Tregs were quantified by flow cytometry in controls and stroke patients on admission and on days 1, 3, 5, and 7 thereafter. Treg function was assessed by quantifying the inhibition of activation-induced expression of CD69 and CD154 on T effector cells (Teffs). Results. Total Tregs accounted for 5.0% of CD4+ T cells in controls and <2.8% in stroke patients on admission. They remained below control values until day 7. CD39+ Tregs were most strongly reduced in stroke patients. On day 3 the Treg-mediated inhibition of CD154 upregulation on CD4+ Teff was impaired in stroke patients. CD39 expression on Treg increased with age in peripheral blood of mice and men. Conclusion. We demonstrate a loss of active FoxP3+CD39+ Tregs from stroke patient’s peripheral blood. The suppressive Treg function of remaining Tregs is impaired after stroke

    Severity of COVID-19 after Vaccination among Hemodialysis Patients: An Observational Cohort Study

    Get PDF
    Background and objectives: Patients receiving hemodialysis are at high risk from coronavirus disease 2019 (COVID-19) and demonstrate impaired immune responses to vaccines. There have been several descriptions of their immunologic responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination, but few studies have described the clinical efficacy of vaccination in patients on hemodialysis. // Design, setting, participants, & measurements: In a multicenter observational study of the London hemodialysis population undergoing surveillance PCR testing during the period of vaccine rollout with BNT162b2 and AZD1222, all of those positive for SARS-CoV-2 were identified. Clinical outcomes were analyzed according to predictor variables, including vaccination status, using a mixed effects logistic regression model. Risk of infection was analyzed in a subgroup of the base population using a Cox proportional hazards model with vaccination status as a time-varying covariate. // Results: SARS-CoV-2 infection was identified in 1323 patients of different ethnicities (Asian/other, 30%; Black, 38%; and White, 32%), including 1047 (79%) unvaccinated, 86 (7%) after first-dose vaccination, and 190 (14%) after second-dose vaccination. The majority of patients had a mild course; however, 515 (39%) were hospitalized, and 172 (13%) died. Older age, diabetes, and immune suppression were associated with greater illness severity. In regression models adjusted for age, comorbidity, and time period, prior two-dose vaccination was associated with a 75% (95% confidence interval, 56 to 86) lower risk of admission and 88% (95% confidence interval, 70 to 95) fewer deaths compared with unvaccinated patients. No loss of protection was seen in patients over 65 years or with increasing time since vaccination, and no difference was seen between vaccine types. // Conclusions: These data demonstrate a substantially lower risk of severe COVID-19 after vaccination in patients on dialysis who become infected with SARS-CoV-2

    Does the implementation of a Quality Improvement Care Bundle reduce the incidence of acute kidney injury in patients undergoing emergency laparotomy?

    Get PDF
    Previous work has demonstrated a survival improvement following the introduction of an enhanced recovery protocol in patients undergoing emergency laparotomy (the emergency laparotomy pathway quality improvement care (ELPQuiC) bundle). Implementation of this bundle increased the use of intra-operative goal directed fluid therapy and ICU admission, both evidence-based strategies recommended to improve kidney outcomes. The aim of this study was to determine if the observed mortality benefit could be explained by a difference in the incidence of AKI pre- and post-implementation of the protocol.This article is freely available via Open Access. Click on the Publisher URL to access the full-text via the publisher's site

    Clonal Hematopoiesis is Associated With Protection From Alzheimer\u27s Disease

    Get PDF
    Clonal hematopoiesis of indeterminate potential (CHIP) is a premalignant expansion of mutated hematopoietic stem cells. As CHIP-associated mutations are known to alter the development and function of myeloid cells, we hypothesized that CHIP may also be associated with the risk of Alzheimer\u27s disease (AD), a disease in which brain-resident myeloid cells are thought to have a major role. To perform association tests between CHIP and AD dementia, we analyzed blood DNA sequencing data from 1,362 individuals with AD and 4,368 individuals without AD. Individuals with CHIP had a lower risk of AD dementia (meta-analysis odds ratio (OR) = 0.64, P = 3.8 × 1

    Impact of Rare and Common Genetic Variants on Diabetes Diagnosis by Hemoglobin A1c in Multi-Ancestry Cohorts: The Trans-Omics for Precision Medicine Program

    Get PDF
    Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (−0.88% in hemizygous males, −0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; −0.98% in hemizygous males, −0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis

    Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women.

    Get PDF
    Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256,523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1 p = 4 × 10-17), arthritis (GDF5 p = 4 × 10-13), cell cycle control and cancer protection, regulation of transcription, and others involved in the development and maintenance of the musculoskeletal system. Using Mendelian randomization we report possible overlapping causal pathways, including diabetes susceptibility, haematological parameters, and the immune system. We conclude that muscle weakness in older adults has distinct mechanisms from continuous strength, including several pathways considered to be hallmarks of ageing
    corecore