268 research outputs found

    Transference of Transport Anisotropy to Composite Fermions

    Full text link
    When interacting two-dimensional electrons are placed in a large perpendicular magnetic field, to minimize their energy, they capture an even number of flux quanta and create new particles called composite fermions (CFs). These complex electron-flux-bound states offer an elegant explanation for the fractional quantum Hall effect. Furthermore, thanks to the flux attachment, the effective field vanishes at a half-filled Landau level and CFs exhibit Fermi-liquid-like properties, similar to their zero-field electron counterparts. However, being solely influenced by interactions, CFs should possess no memory whatever of the electron parameters. Here we address a fundamental question: Does an anisotropy of the electron effective mass and Fermi surface (FS) survive composite fermionization? We measure the resistance of CFs in AlAs quantum wells where electrons occupy an elliptical FS with large eccentricity and anisotropic effective mass. Similar to their electron counterparts, CFs also exhibit anisotropic transport, suggesting an anisotropy of CF effective mass and FS.Comment: 5 pages, 5 figure

    Silicon-based spin and charge quantum computation

    Full text link
    Silicon-based quantum-computer architectures have attracted attention because of their promise for scalability and their potential for synergetically utilizing the available resources associated with the existing Si technology infrastructure. Electronic and nuclear spins of shallow donors (e.g. phosphorus) in Si are ideal candidates for qubits in such proposals due to the relatively long spin coherence times. For these spin qubits, donor electron charge manipulation by external gates is a key ingredient for control and read-out of single-qubit operations, while shallow donor exchange gates are frequently invoked to perform two-qubit operations. More recently, charge qubits based on tunnel coupling in P2+_2^+ substitutional molecular ions in Si have also been proposed. We discuss the feasibility of the building blocks involved in shallow donor quantum computation in silicon, taking into account the peculiarities of silicon electronic structure, in particular the six degenerate states at the conduction band edge. We show that quantum interference among these states does not significantly affect operations involving a single donor, but leads to fast oscillations in electron exchange coupling and on tunnel-coupling strength when the donor pair relative position is changed on a lattice-parameter scale. These studies illustrate the considerable potential as well as the tremendous challenges posed by donor spin and charge as candidates for qubits in silicon.Comment: Review paper (invited) - to appear in Annals of the Brazilian Academy of Science

    Observation of the Fractional Quantum Hall Effect in Graphene

    Full text link
    When electrons are confined in two dimensions and subjected to strong magnetic fields, the Coulomb interactions between them become dominant and can lead to novel states of matter such as fractional quantum Hall liquids. In these liquids electrons linked to magnetic flux quanta form complex composite quasipartices, which are manifested in the quantization of the Hall conductivity as rational fractions of the conductance quantum. The recent experimental discovery of an anomalous integer quantum Hall effect in graphene has opened up a new avenue in the study of correlated 2D electronic systems, in which the interacting electron wavefunctions are those of massless chiral fermions. However, due to the prevailing disorder, graphene has thus far exhibited only weak signatures of correlated electron phenomena, despite concerted experimental efforts and intense theoretical interest. Here, we report the observation of the fractional quantum Hall effect in ultraclean suspended graphene, supporting the existence of strongly correlated electron states in the presence of a magnetic field. In addition, at low carrier density graphene becomes an insulator with an energy gap tunable by magnetic field. These newly discovered quantum states offer the opportunity to study a new state of matter of strongly correlated Dirac fermions in the presence of large magnetic fields

    Two-dimensional Dirac fermions in a topological insulator: transport in the quantum limit

    Full text link
    Pulsed magnetic fields of up to 55T are used to investigate the transport properties of the topological insulator Bi_2Se_3 in the extreme quantum limit. For samples with a bulk carrier density of n = 2.9\times10^16cm^-3, the lowest Landau level of the bulk 3D Fermi surface is reached by a field of 4T. For fields well beyond this limit, Shubnikov-de Haas oscillations arising from quantization of the 2D surface state are observed, with the \nu =1 Landau level attained by a field of 35T. These measurements reveal the presence of additional oscillations which occur at fields corresponding to simple rational fractions of the integer Landau indices.Comment: 5 pages, 4 figure

    Electron-Spin Precession in Dependence of the Orientation of the External Magnetic Field

    Get PDF
    Electron-spin dynamics in semiconductor-based heterostructures has been investigated in oblique magnetic fields. Spins are generated optically by a circularly polarized light, and the dynamics of spins in dependence of the orientation (θ) of the magnetic field are studied. The electron-spin precession frequency, polarization amplitude, and decay rate as a function ofθare obtained and the reasons for their dependences are discussed. From the measured data, the values of the longitudinal and transverse components of the electrong-factor are estimated and are found to be in good agreement with those obtained in earlier investigations. The possible mechanisms responsible for the observed effects are also discussed

    Rapidly Rotating Atomic Gases

    Full text link
    This article reviews developments in the theory of rapidly rotating degenerate atomic gases. The main focus is on the equilibrium properties of a single component atomic Bose gas, which (at least at rest) forms a Bose-Einstein condensate. Rotation leads to the formation of quantized vortices which order into a vortex array, in close analogy with the behaviour of superfluid helium. Under conditions of rapid rotation, when the vortex density becomes large, atomic Bose gases offer the possibility to explore the physics of quantized vortices in novel parameter regimes. First, there is an interesting regime in which the vortices become sufficiently dense that their cores -- as set by the healing length -- start to overlap. In this regime, the theoretical description simplifies, allowing a reduction to single particle states in the lowest Landau level. Second, one can envisage entering a regime of very high vortex density, when the number of vortices becomes comparable to the number of particles in the gas. In this regime, theory predicts the appearance of a series of strongly correlated phases, which can be viewed as {\it bosonic} versions of fractional quantum Hall states. This article describes the equilibrium properties of rapidly rotating atomic Bose gases in both the mean-field and the strongly correlated regimes, and related theoretical developments for Bose gases in lattices, for multi-component Bose gases, and for atomic Fermi gases. The current experimental situation and outlook for the future are discussed in the light of these theoretical developments.Comment: Published version + minor correction

    Simulation Methodology for Electron Transfer in CMOS Quantum Dots

    Full text link
    The construction of quantum computer simulators requires advanced software which can capture the most significant characteristics of the quantum behavior and quantum states of qubits in such systems. Additionally, one needs to provide valid models for the description of the interface between classical circuitry and quantum core hardware. In this study, we model electron transport in semiconductor qubits based on an advanced CMOS technology. Starting from 3D simulations, we demonstrate an order reduction and the steps necessary to obtain ordinary differential equations on probability amplitudes in a multi-particle system. We compare numerical and semi-analytical techniques concluding this paper by examining two case studies: the electron transfer through multiple quantum dots and the construction of a Hadamard gate simulated using a numerical method to solve the time-dependent Schrodinger equation and the tight-binding formalism for a time-dependent Hamiltonian

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Spin-resolved Quantum Interference in Graphene

    Full text link
    The unusual electronic properties of single-layer graphene make it a promising material system for fundamental advances in physics, and an attractive platform for new device technologies. Graphene's spin transport properties are expected to be particularly interesting, with predictions for extremely long coherence times and intrinsic spin-polarized states at zero field. In order to test such predictions, it is necessary to measure the spin polarization of electrical currents in graphene. Here, we resolve spin transport directly from conductance features that are caused by quantum interference. These features split visibly in an in-plane magnetic field, similar to Zeeman splitting in atomic and quantum dot systems. The spin-polarized conductance features that are the subject of this work may, in the future, lead to the development of graphene devices incorporating interference-based spin filters.Comment: 12 pages, 4 figures, plus supplementary (11 pages, 9 figures

    Origin of the Spin-Orbital Liquid State in a Nearly J=0 Iridate Ba3ZnIr2O9

    Get PDF
    We show using detailed magnetic and thermodynamic studies and theoretical calculations that the ground state of Ba3ZnIr2O9 is a realization of a novel spin-orbital liquid state. Our results reveal that Ba3ZnIr2O9 with Ir5+ (5d(4)) ions and strong spin-orbit coupling (SOC) arrives very close to the elusive J = 0 state but each Ir ion still possesses a weak moment. Ab initio density functional calculations indicate that this moment is developed due to superexchange, mediated by a strong intradimer hopping mechanism. While the Ir spins within the structural Ir2O9 dimer are expected to form a spin-orbit singlet state (SOS) with no resultant moment, substantial frustration arising from interdimer exchange interactions induce quantum fluctuations in these possible SOS states favoring a spin-orbital liquid phase down to at least 100 mK
    • …
    corecore