68 research outputs found

    Series Expansion Approximations of Brownian Motion for Non-Linear Kalman Filtering of Diffusion Processes

    Get PDF
    In this paper, we describe a novel application of sigma-point methods to continuous-discrete filtering. In principle, the nonlinear continuous- discrete filtering problem can be solved exactly. In practice, the solution contains terms that are computationally intractible. Assumed density filtering methods attempt to match statistics of the filtering distribution to some set of more tractible probability distributions. We describe a novel method that decomposes the Brownian motion driving the signal in a generalised Fourier series, which is truncated after a number of terms. This approximation to Brownian can be described using a relatively small number of Fourier coefficients, and allows us to compute statistics of the filtering distribution with a single application of a sigma-point method. Assumed density filters that exist in the literature usually rely on discretisation of the signal dynamics followed by iterated application of a sigma point transform (or a limiting case thereof). Iterating the transform in this manner can lead to loss of information about the filtering distri- bution in highly nonlinear settings. We demonstrate that our method is better equipped to cope with such problems

    Robot Mapping and Localisation for Feature Sparse Water Pipes Using Voids as Landmarks

    Get PDF
    Robotic systems for water pipe inspection do not generally include navigation components for mapping the pipe network and locating damage. Such navigation systems would be highly advantageous for water companies because it would allow them to more effectively target maintenance and reduce costs. In water pipes, a major challenge for robot navigation is feature sparsity. In order to address this problem, a novel approach for robot navigation in water pipes is developed here, which uses a new type of landmark feature - voids outside the pipe wall, sensed by ultrasonic scanning. The method was successfully demonstrated in a laboratory environment and showed for the first time the potential of using voids for robot navigation in water pipes

    Sanitation of blackwater via sequential wetland and electrochemical treatment

    Get PDF
    The discharge of untreated septage is a major health hazard in countries that lack sewer systems and centralized sewage treatment. Small-scale, point-source treatment units are needed for water treatment and disinfection due to the distributed nature of this discharge, i.e., from single households or community toilets. In this study, a high-rate-wetland coupled with an electrochemical system was developed and demonstrated to treat septage at full scale. The full-scale wetland on average removed 79 +/- 2% chemical oxygen demand (COD), 30 +/- 5% total Kjeldahl nitrogen (TKN), 58 +/- 4% total ammoniacal nitrogen (TAN), and 78 +/- 4% orthophosphate. Pathogens such as coliforms were not fully removed after passage through the wetland. Therefore, the wetland effluent was subsequently treated with an electrochemical cell with a cation exchange membrane where the effluent first passed through the anodic chamber. This lead to in situ chlorine or other oxidant production under acidifying conditions. Upon a residence time of at least 6 h of this anodic effluent in a buffer tank, the fluid was sent through the cathodic chamber where pH neutralization occurred. Overall, the combined system removed 89 +/- 1% COD, 36 +/- 5% TKN, 70 +/- 2% TAN, and 87 +/- 2% ortho-phosphate. An average 5-log unit reduction in coliform was observed. The energy input for the integrated system was on average 16 +/- 3 kWh/m(3), and 11 kWh/m(3) under optimal conditions. Further research is required to optimize the system in terms of stability and energy consumption

    Nonlinear state estimation using an invariant unscented Kalman filter

    No full text
    corecore