6 research outputs found

    Chronic Renal Disease Prediction using Clinical Data and Different Machine Learning Techniques

    Get PDF
    Chronic Renal Disease (CRD) or Chronic Kidney Disease (CKD) is defined as the continuous loss of kidney function. It's a long-term condition in which the kidney or renal doesn't work properly, gets damaged and can't filter blood on a regular basis. Diabetes, high blood pressure, swollen feet, ankles or hands and other disorders can cause chronic renal disease. By gradual progression and lack of treatment, it can lead to kidney failure. A prior prognosis of CKD can nourish the quality of life to a higher range in such circumstances and can enhance the attribute of life to a larger province. Now a days, bioscience is playing a significant role in the aspect of diagnosing and detecting numerous health conditions. Machine Learning (ML) as well as Data Mining (DM) methods are playing the leading role in the realm of biosciences. Our objective is to predict and diagnose (CKD) with some machine learning algorithms. In this study, an attempt to diagnose chronic renal disease has been taken with four ML algorithms named XGBoost, Adaboost, Logistic Regression (LR) as well as Random Forest (RF). By using decision tree-based classifiers and analyzing the dataset with comparing their performance, we attempted to diagnose CKD in this study. The results of the model in this study showed prosperous indications of a better prognosis for the diagnosis of kidney diseases. Considering and contemplating the performance analysis, it is accomplished that Random Forest ensemble learning algorithm provides better classification performance than other classification methods.acceptedVersionPeer reviewe

    Web Search Engine Misinformation Notifier Extension (SEMiNExt): A Machine Learning Based Approach during COVID-19 Pandemic

    Get PDF
    Misinformation such as on coronavirus disease 2019 (COVID-19) drugs, vaccination or presentation of its treatment from untrusted sources have shown dramatic consequences on public health. Authorities have deployed several surveillance tools to detect and slow down the rapid misinformation spread online. Large quantities of unverified information are available online and at present there is no real-time tool available to alert a user about false information during online health inquiries over a web search engine. To bridge this gap, we propose a web search engine misinformation notifier extension (SEMiNExt). Natural language processing (NLP) and machine learning algorithm have been successfully integrated into the extension. This enables SEMiNExt to read the user query from the search bar, classify the veracity of the query and notify the authenticity of the query to the user, all in real-time to prevent the spread of misinformation. Our results show that SEMiNExt under artificial neural network (ANN) works best with an accuracy of 93%, F1-score of 92%, precision of 92% and a recall of 93% when 80% of the data is trained. Moreover, ANN is able to predict with a very high accuracy even for a small training data size. This is very important for an early detection of new misinformation from a small data sample available online that can significantly reduce the spread of misinformation and maximize public health safety. The SEMiNExt approach has introduced the possibility to improve online health management system by showing misinformation notifications in real-time, enabling safer web-based searching on health-related issues

    Obstructive Sleep Apnea (OSA) and COVID-19: Mortality Prediction of COVID-19-Infected Patients with OSA Using Machine Learning Approaches

    No full text
    COVID-19, or coronavirus disease, has caused an ongoing global pandemic causing un-precedented damage in all scopes of life. An infected person with underlaying medical conditions is at greater risk than the rest of the population. Obstructive sleep apnea (OSA) is an illness associated with disturbances during sleep or an unconscious state with blockage of the airway passage. The comobordities of OSA with high blood pressure, diabetes, obesity, and age can place the life of an already infected COVID-19 patient into danger. In this paper, a prediction model for the mortality of a COVID-infected patient suffering from OSA is developed using machine learning algorithms. After an extensive methodical search, we designed an artificial neural network that can predict the mortality with an overall accuracy of 99% and a precision of 100% for forecasting the fatality chances of COVID-infected patients. We believe our model can accurately predict the mortality of the patients and can therefore assist medical health workers in predicting and making emergency clinical decisions, especially in a limited resource scenario, based on the medical history of the patients and their future potential risk of death. In this way, patients with a greater risk of mortality can receive timely treatment and benefit from proper ICU resources. Such artificial intelligent application can significantly reduce the overall mortality rate of vulnerable patients with existing medical disorders

    COVID-19 Prognosis and Mortality Risk Predictions from Symptoms: A Cloud-Based Smartphone Application

    No full text
    The coronavirus pandemic overwhelmed many countries and their healthcare systems. Shortage of testing kits and Intensive-Care-Unit (ICU) beds for critical patients have become a norm in most developing countries. This has prompted the need to rapidly identify the COVID-19 patients to stop the spread of the virus and also to find critical patients. The latter is imperative for determining the state of critically ill patients as quickly as possible. This will lower the number of deaths from the infection. In this paper, we propose a cloud-based smartphone application for the early prognosis of COVID-19 infected patients and also predict their mortality risk using their symptoms. Moreover, we heuristically identified the most important symptoms necessary for making such predictions. We have successfully reduced the number of features by almost half for the prognosis and by more than a third for forecasting the mortality risk, compared to the contemporary studies. The application makes the real-time analysis using machine learning models, designed and stored in the cloud. Our machine learning model demonstrates an accuracy, precision, recall, and F1 score of 97.72%, 100%, 95.55%, and 97.70%, respectively, in identifying the COVID-19 infected patients and with an accuracy, precision, recall, and F1 score of 90.83%, 88.47%, 92.94%, and 90.65%, respectively, in forecasting the mortality risk from the infection. The real-time cloud-based approach yields faster responses, which is critical in the time of pandemic for mitigating the infection spread and aiding in the efficient management of the limited ICU resources

    COVID-19 Prognosis and Mortality Risk Predictions from Symptoms: A Cloud-Based Smartphone Application

    No full text
    The coronavirus pandemic overwhelmed many countries and their healthcare systems. Shortage of testing kits and Intensive-Care-Unit (ICU) beds for critical patients have become a norm in most developing countries. This has prompted the need to rapidly identify the COVID-19 patients to stop the spread of the virus and also to find critical patients. The latter is imperative for determining the state of critically ill patients as quickly as possible. This will lower the number of deaths from the infection. In this paper, we propose a cloud-based smartphone application for the early prognosis of COVID-19 infected patients and also predict their mortality risk using their symptoms. Moreover, we heuristically identified the most important symptoms necessary for making such predictions. We have successfully reduced the number of features by almost half for the prognosis and by more than a third for forecasting the mortality risk, compared to the contemporary studies. The application makes the real-time analysis using machine learning models, designed and stored in the cloud. Our machine learning model demonstrates an accuracy, precision, recall, and F1 score of 97.72%, 100%, 95.55%, and 97.70%, respectively, in identifying the COVID-19 infected patients and with an accuracy, precision, recall, and F1 score of 90.83%, 88.47%, 92.94%, and 90.65%, respectively, in forecasting the mortality risk from the infection. The real-time cloud-based approach yields faster responses, which is critical in the time of pandemic for mitigating the infection spread and aiding in the efficient management of the limited ICU resources

    Web search engine misinformation notifier extension (SEMiNExt):a machine learning based approach during COVID-19 pandemic

    No full text
    Abstract Misinformation such as on coronavirus disease 2019 (COVID-19) drugs, vaccination or presentation of its treatment from untrusted sources have shown dramatic consequences on public health. Authorities have deployed several surveillance tools to detect and slow down the rapid misinformation spread online. Large quantities of unverified information are available online and at present there is no real-time tool available to alert a user about false information during online health inquiries over a web search engine. To bridge this gap, we propose a web search engine misinformation notifier extension (SEMiNExt). Natural language processing (NLP) and machine learning algorithm have been successfully integrated into the extension. This enables SEMiNExt to read the user query from the search bar, classify the veracity of the query and notify the authenticity of the query to the user, all in real-time to prevent the spread of misinformation. Our results show that SEMiNExt under artificial neural network (ANN) works best with an accuracy of 93%, F1-score of 92%, precision of 92% and a recall of 93% when 80% of the data is trained. Moreover, ANN is able to predict with a very high accuracy even for a small training data size. This is very important for an early detection of new misinformation from a small data sample available online that can significantly reduce the spread of misinformation and maximize public health safety. The SEMiNExt approach has introduced the possibility to improve online health management system by showing misinformation notifications in real-time, enabling safer web-based searching on health-related issues
    corecore