92 research outputs found

    Architectures and Mechanical Properties of Drugs and Complexes of Surface-Active Compounds at Air-Water and Oil-Water Interfaces

    Get PDF
    Abstract: Background: Drugs can represent a multitude of compounds from proteins and peptides, such as growth hormones and insulin and on to simple organic molecules such as flurbiprofen, ibuprofen and lidocaine. Given the chemical nature of these compounds two features are always present. A portion or portions of the molecule that has little affinity for apolar surfaces and media and on the contrary a series of part or one large part that has considerable affinity for hydrophilic, polar or charged media and surfaces. A series of techniques are routinely used to probe the molecular interactions that can arise between components, such as the drug, a range of surface-active excipients and flavor compounds, for example terpenoids and the solvent or dispersion medium. Results: Fifty-eight papers were included in the review, a large number (16) being of theoretical nature and an equally large number (14) directly pertaining to medicine and pharmacy; alongside experimental data and phenomenological modelling. The review therefore simultaneously represents an amalgam of review article and research paper with routinely used or established (10) and wellreported methodologies (also included in the citations within the review). Experimental data included from various sources as diverse as foam microconductivity, interferometric measurements of surface adsorbates and laser fluorescence spectroscopy (FRAP) are used to indicate the complexity and utility of foams and surface soft matter structures for a range of purposes but specifically, here for encapsulation and incorporation of therapeutics actives (pharmaceutical molecules, vaccines and excipients used in medicaments). Techniques such as interfacial tensiometry, interfacial rheology (viscosity, elasticity and viscoelasticity) and nanoparticle particle size (hydrodynamic diameter) and charge measurements (zeta potential), in addition to atomic force and scanning electron microscopy have proven to be very useful in understanding how such elemental components combine, link or replace one another (competitive displacement). They have also proven to be both beneficial and worthwhile in the sense of quantifying the unseen actions and interplay of adsorbed molecules and the macroscopic effects, such as froth formation, creaming or sedimentation that can occur as a result of these interactions

    Surface chains and balls

    Get PDF

    Interfacial effects and the nano-scale disruption in adsorbed-layer of acrylate polymer-Tween 80 fabricated steroid-bearing emulsions:a rheological study of supramolecular materials

    Get PDF
    The effect of polymer adsorption on the stability and viable shelf life of 55 μm diameter oil-in-water (O/W) emulsions containing the steroid, betamethasone 21-phosphate was investigated. Two acrylate polymers, Carbopol® 971P and 974P, were added in the role of emulsion stabilizers to a model system, representing a non-ionic low molecular weight surfactant-stabilized emulsion (topically applied medicinal cream). For the purposes of this study the dosage of the viscosifier was maintained below 1% w/v and consequently, the consistency of the emulsion was measured in the diluted form. One of the polymers was responsible for elevated degrees of droplet creaming and coalescence and this was closely linked to its surface tension lowering capacity. This lowering was seen at 62 mN/m compared to the routine values at equivalent concentrations of 68 mN/m and 35 mN/m for the betamethasone drug and non-ionic surfactant-Tween 80, respectively. The same polymer also demonstrated a predisposition to form low-micron and greater sized aggregates of nanoparticles that led to extensive flocculation and the formation of a sedimentary precipitate, formed from an amalgam of the components found in the creamed droplet layer

    Introduction to nanoscience

    Get PDF

    Acting on feedback, an iterative spiral of of improvement for both students and lecturers

    Get PDF

    Quality systems and control for pharmaceuticals

    Get PDF

    Strange but true: the physics of glass, gels and jellies is all related through rheology

    Get PDF
    Rheology is an enormously far-reaching branch of physics (or physical chemistry) and has a number of different guises. Rheological descriptions define fluids, semi-solids and conventional solids, and the application of this science defines the performance and utility of materials and substances as diverse as foods (such as yogurt and marmalade), body tissues (such as blood, skin and bone) and civil and mechanical engineering materials (such as glass, iron girders and copper wire). Two of the most commonly used terms are viscosity and elasticity, and in some sense these are exact opposites, in which energy put in is either dissipated or stored, respectively. Other useful rheological terms include brittleness, stiffness and stickiness. The experiments considered, described and explained in this article represent accessible manifestations of this rather complex branch of science

    Ozone Decomposition over Silver-Loaded Perlite

    Get PDF
    The Bulgarian natural expanded mineral obtained from Bentonite AD perlite (A deposit of "The Broken Mountain" for perlite mining, near by the village of Vodenicharsko, in the municipality of Djebel), was loaded with silver (as ion form - Ag+ 2 and 5 wt% by the incipient wetness impregnation method), and as atomic silver - Ag0 using Tollen-s reagent (silver mirror reaction). Some physicochemical characterization of the samples are provided via: DC arc-AES, XRD, DR-IR and UV-VIS. The aim of this work was to obtain and test the silver-loaded catalyst for ozone decomposition. So the samples loaded with atomic silver show ca. 80% conversion of ozone 20 minutes after the reaction start. Then conversion decreases to ca. 20 % but stay stable during the prolongation of time
    • …
    corecore