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Abstract: Background: Drugs can represent a multitude of compounds from pro-
teins and peptides, such as growth hormones and insulin and on to simple organic
molecules such as flurbiprofen, ibuprofen and lidocaine. Given the chemical nature
of these compounds two features are always present. A portion or portions of the
molecule that has little affinity for apolar surfaces and media and on the contrary a
series of part or one large part that has considerable affinity for hydrophilic, polar or
charged media and surfaces. A series of techniques are routinely used to probe the
molecular interactions that can arise between components, such as the drug, a range
of surface—active excipients and flavor compounds, for example terpenoids and the
solvent or dispersion medium.

Results: Fifty-eight papers were included in the review, a large number (16) be-
ing of theoretical nature and an equally large number (14) directly pertaining to
medicine and pharmacy; alongside experimental data and phenomenological
modelling. The review therefore simultaneously represents an amalgam of re-
view article and research paper with routinely used or established (10) and well-
R Novesbu 06,2017 reported methodologies (also included in the citations within the review). Exper-
Accepted: Novernber 10, 2017 imental data included from various sources as diverse as foam micro-
D sosssusserisne | CONAUCTIVItY, interferometric measurements of surface adsorbates and laser fluo-
rescence spectroscopy (FRAP) are used to indicate the complexity and utility of
foams and surface soft matter structures for a range of purposes but specifically,
here for encapsulation and incorporation of therapeutics actives (pharmaceutical
molecules, vaccines and excipients used in medicaments). Techniques such as
interfacial tensiometry, interfacial rheology (viscosity, elasticity and visco-
elasticity) and nanoparticle particle size (hydrodynamic diameter) and charge
measurements (zeta potential), in addition to atomic force and scanning electron
microscopy have proven to be very useful in understanding how such elemental
components combine, link or replace one another (competitive displacement).
They have also proven to be both beneficial and worthwhile in the sense of
quantifying the unseen actions and interplay of adsorbed molecules and the mac-
roscopic effects, such as froth formation, creaming or sedimentation that can oc-
cur as a result of these interactions.
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Conclusion: The disclosures and evaluations presented in this review confirm the
importance of a theoretical understanding of a complex model of the molecular inter-
actions, network and present a framework for the understanding of really very com-
plex physical forms. Future therapeutic developer rely on an understanding of such
complexity to garner a route to a more successful administration and formulation of a
new generation of therapeutic delivery systems for use in medicine.

Keywords: Adsorbed layer, crosslinking, surfactant, polymer, drug, surface-active compounds.

1. INTRODUCTION

Many pharmaceutical and biomedical products,
such as sterile injections of therapeutic proteins,
simple (colloids) and complex vaccines (multi-
phase emulsions) and standard prescription drugs
and over-the-counter (OTC) medicines, such as
anti-dermatitis shampoos, creams, lotions and
ointments, liposomal dispersions and coarse dis-
persions of solids are based on the use of wetting
agents and hydrocolloid stabilizers or thickening
agents [1, 2]. The wetting agents are typically
simple non-ionic surfactants (emulsifiers), such as
polysorbates (Tweens), sugar esters (Spans),
chemically-modified celluloses and blocked co-
polymers (Pluronics and Tetronics) but are also
often low molecular weight natural charged spe-
cies, such as fatty acids and lecithins (phosphati-
dylcholines) [3]. In addition to the functional for-
mulation aids or excipients, such as, emulsifiers,
other common ingredients in pharmaceutical and
therapeutic formulations include the active phar-
maceutical ingredient (API; active; drug) itself and
shelf life maintaining agents that secure the integ-
rity of the therapeutic, such as isotonicity salts and
sugars, buffers, sequestrants, antioxidants and
acidifiers [1]. Vaccines represent particularly
complex forms of medicines as they often contain
solids, such as alum (aluminum nanoparticles),
emulsions, cell membrane lipids, traces of culture
media, cellular fragments and proteins. Key ingre-
dients in vaccines, course dispersions (suspensions
of solids, foams, emulsions) and colloidal thera-
peutics (polymer micelles and liposomes) are indi-
cated in Table 1. Such a complex array of ingredi-
ents (excipients) are known as adjuvants in a vac-
cine and used to promote a larger immune re-
sponse upon injection into the blood [2]. Both egg
and milk proteins are found in significant concen-
trations within many vaccines, such as the diphthe-
ria, acellular pertussis and tetanus (DaPT) vaccine.

Simple drug types include, antibiotics (e.g.
erythromycin, ciprofloxacin), anesthetics (e.g. li-

docaine, propofol), cell destroying - cytotoxics
(e.g. paclitaxel, doxorubicin, methotrexate), anti-
inflammatory drugs (e.g. betamethasone, flopropi-
one), hormones (e.g. estradiol, insulin), psycho-
active API’s (e.g. lithium carbonate, amitripty-
line), and many more formulated intro therapeutic
products. The range of forms observed is large and
traverses simple solutions and colloids [4-6], to
products based on fibers [7, 8]. In order to under-
stand the working of such complex systems, it has
been necessary to start by looking at simple mod-
els of the interplay [9] between polymers (poly-
saccharides, gums, complex lipids, emulsifiers,
proteins and oligonucleotides), organic molecules
and excipients [10, 11]. A list of common vaccine,
food and pharmaceutical surface-active agents and
product ingredients is presented in Table 2. The
simple active species (exception of insulin), are
not presented in the Table but are mentioned at
relevant points in this review. Many of these ther-
apeutics possess a high octanol-water partition co-
efficients (as hydrophobes) or log P values, and
consequently show varying degrees of surface-
activity. In addition to the formal pharmaceuticals,
many novel and emerging products with “sup-
posed” therapeutic properties used in ‘nutraceuti-
cal’ (nutritional-pharmaceuticals e.g. hydrophobic
hop iso-acids and vitaminized supplements) and
‘cosmeceutical’ (cosmetic-pharmaceuticals e.g.
glycosylated-polyunsaturated lipid) formulations
[12] also show significant excipient-interaction
properties and surface-activity [13]. These prod-
ucts often contain polysaccharides [14] with or
without flavanols, quinones and polyphenolic
compounds, such as ferulic acid, quercetin, cate-
chin, curcumin and phloroglucinol [11, 15].

Biomedical applications of API and excipients
[4, 10, 16, 17] extend to coatings for surgical devic-
es and other drug eluting devices, such as transder-
mal (patch) and subcutaneous implants (scaffolds).
Here, modified surfaces and hydrophilization using
surfactant coverage can aid wettability. This type of
wetting is often used to hydrophilize surfaces and
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Table 1. Indication of the components routinely found in medicines and therapeutics, such as vaccines, coarse disper-

sions and nanomedicines.

Ingredient/Excipient in Product

Role

Egg proteins from culture medium

Vaccine component

Ovalbumin

Conalbumin

Milk proteins from culture medium

Vaccine component

B-casein and caseinates

a-lactabumin

Bovine serum albumin (BSA)*

Bacterial and yeast proteins

Vaccine component from passagingf

Human, animal and insect proteins

Vaccine component from passagingf

Gelatin (collagen)

Vaccine and pharmaceutical component

Gums and polysaccharides

Vaccine and pharmaceutical component

Proteins and enzymes

Vaccine and pharmaceutical component

Polysorbates (Tweens) and surfactants

Vaccine and pharmaceutical component

Antibiotics

Vaccine and pharmaceutical component

Silica and silicates

Pharmaceutical component

Latexes

Pharmaceutical component

Alum (potassium aluminium sulphate)

Vaccine component

Microbial antigens (cell fragments)

Vaccine component

Natural (animal/plant) and synthetic oils

Vaccine and pharmaceutical component

Vaccines contain a minimum on average ~2 pg/ml proteins e.g. ovalbumin or caseinates from culture medium or the cultured cell. The con-

tent can be considerably higher.

*HSA the human version of BSA is used in a number of injectable pharmaceuticals to aid long-circulation in the blood e.g. Abraxane® (a 130
nm paclitaxel-HSA nanoparticle conjugate used for breast cancer treatment).
Passaging or sub-culturing refers to the practice of transferring cells from an original culture to fresh growth medium to maintain the patho-
gen culture and expand the number of cells it is also a means of assisting the loss of virulence of a pathogenic strain.

Table 2. Surface active materials described in the figures of the article and used ubiquitously in foods and medical

products.

Surface Active Agent Source Molecular Weight
Bifunctional agents
Arabinoxylan (ferulate ester)f Rye Average 0.6 MDa (370-870 kDa)
(+)-catechin (flavan-3-ol) Plant material 290 Da
Isohumulone Hops 362 Da
Pectin (polygalacturonic acid) Fruit Average 95 kDa

Methylcellulose (MeC)

Semi-synthetic Average 145 kDa

Proteins
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Surface Active Agent Source Molecular Weight
B-casein Bovine milk 24 kDa (phosphorylated protein)
Bovine serum albumin (BSA) Blood/milk 67 kDa (globular protein)
a-lactalbumin Bovine milk 14 kDa (globular protein)
B-lactoglobulin Bovine milk 18.6 kDa (globular protein)
Conalbumin (ovotransferrin) Chicken egg 76 kDa (glycoprotein)
Ovalbumin Chicken egg 43 kDa (glycoprotein)

Insulin protein

Bovine pancreas 5.8 kDa (twin-chained peptide)

Simple surfactants

Tetronic T904 (poloxamine 908) Synthetic 25 kDa (80% hydrophile)

Pluronic F68 (poloxamer 188) Synthetic 8.4 kDa (80% hydrophile)

Pluronic F108 (poloxamer 338) Synthetic 14.6 kDa (80% hydrophile)
ODAF — 5-N-(octadecanoyl) aminofluorescein Synthetic 614 Da (fluorescent surfactant)
Tween 20 - polyoxyethylene(20)-sorbitan monolaurate Synthetic 1224 Da (non-ionic surfactant)
LPC — L-a-lysophosphatidylcholine, monopalmitate: monostearate 2:1 (lyso-lecithin from egg) Chicken egg 496 Da (zwitterionic surfactant)

Di-palmitoyl phosphatidylcholine (DPPC) Soya 734 Da (zwitterionic lipid)
Cholesterol Chicken egg 387 Da (sterol, bile precursor)

1 - Arabinoxylan is also known as pentosan.

1 - ODAF (or equivalent fluorophore) is not used in a therapeutic context but is a fluorescent probe molecule used for measurements of mo-

lecular mobility.

‘bind’ a layer of water in particles and prevent them
from developing biofilms in situ or being removed
[11, 17] from the blood (in parenteral injected prod-
ucts), via a complex biochemical process of label-
ling with blood proteins and antibodies (opsoniza-
tion) and then engulfment by blood phagocyte cells
(white blood cells; macrophages) as part of the
body’s defenses [2, 11]. More general colloid sci-
ence and medical nanotechnology involve more fa-
miliar drug delivery vehicles [8], these being mi-
celles, liposomes, solid lipid nanoparticles (solid
emulsions; SLNs), nanogels (polymer micelles) and
molecular drug-polymer conjugates [6, 11], known
as pro-drugs. Encapsulation of therapeutic species in
these dispersion forms is frequently used for con-
finement of colloidal isotopes for chemotherapy and
radiotherapy purposes and CAT scan or MRI imag-
ing aids, such as elemental gadolinium [1, 2].

2. UNDERSTANDING SYSTEM BEHAVIOR:
MODELS

A number of groups have studied the properties
of polymers [18-22] and surfactants/emulsifiers
[10, 23, 24] at macroscopic surfaces, and this re-

mains the reasonable starting point for a better un-
derstanding of the behavior of polymer, actives
and surfactants (formulating aids) in medical and
pharmaceutical dispersions. A particularly useful
starting point for looking at therapeutic dispersion
behavior and commercial-stability, therefore effi-
cacy, has been to consider the behavior of protein
(usually globular proteins) at air-water (A/W) and
oil-water (O/W) surfaces or interfaces, respective-
ly [25, 26]. Globular proteins, such a bovine serum
albumin (BSA), human serum albumin (HSA) and
B-lactoglobulin (BLG), are widely studied across
the board [27-33] by colloid scientists by virtue of
their compact size, near ideal profile of the four
classes of amino acids (aromatic-aliphatic, acidic-
basic, sulfur-containing and polar), superb surface-
active properties, non-toxic nature and ease of iso-
lation from a biological source.

The reasoning behind their ubiquitous use, is
two-fold. First, proteins represent nearly-ideal
models of strongly-interacting polymers because
of their capability to form ionic, covalent, apolar,
hydrogen-bond and disulfide bridge formal bonds
and interactions. Second, they have biological and
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medical relevance because in the period 2005-
2017 more than 25% of all currently licensed, new
and in-development therapeutics are based on pro-
teins and antibodies (proteins). This figure is esti-
mated to top the 50% mark some decades into the
future [1, 2]. A large number of colloid and sur-
face groups traversing those involved with theoret-
ical modelling [19, 20, 23, 34] and more pragmatic
practical understanding [12, 30, 35-37] have
looked at the properties of proteins at A/W and
O/W interfaces. Areas of study of the mechanical
and physico-chemical properties of adsorbed pro-
tein films have involved biophysics [38], medicine
[7, 9, 39], food [14, 30] and agricultural applica-
tions. However, because of their molecular mass,
which can be anything from a small, 5800 Da (in-
sulin) to for example, a large, severe acute respira-
tory virus coronavirus accessory protein-7a (SARS
virus protein) of 201000 Da, this means diffusion
to and re-configuration at the A/W or O/W inter-
face can be lengthy, unlike a simple low molecular
weight surfactant [3, 5, 27, 40, 41], which show
rapid surface diffusion, such as Tween 20.

2.1. Surface Tension and Adsorption to the In-
terface

A convenient way of understanding the basics
of protein adsorption at the interface is by evaluat-
ing the ease by which and time involved to achieve
equilibrium surface tension values. A/W meas-
urement are generally more convenient than O/W
measurements using many forms of modern appa-
ratus [28, 32, 34, 40, 41] and frequently having
yielded similar data. In some approximate way,
A/W measurements and O/W measurements dou-
ble-up as ‘air’ can be viewed as a loose model of
the oil-phase of emulsion by virtue of its dielectric
constant, which is about half of most oils and near-
ly 80 times less than water [2] but with this dis-
tinct concept, as has always been soundly argued,
lacking the increased density and viscosity may
inhibit species inter-penetration into the oil-phase.
Recent studies have however indicated that liquid
hydrocarbons may allow surfactant-like species
considerable freedom to enter the oil phase unlike
the gel phase, as fats used in SLNs [19, 26, 28, 33,
34] may constrain movement due to impenetrabil-

ity.
The equilibrium or near-equilibrium surface

tension values for a series of proteins of food and
pharmaceutical use are shown in Fig. 1 (Part A).
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As in the case of many proteins for the protein
shown, the rate of diffusion to the interface and
species equilibrium attainment is based on the
physico-chemical properties [33], functional group
chemistry of the protein and extrinsic environmen-
tal properties, such as mechanical denaturing,
temperature and oxygen tension of the gas and lig-
uid phases [40]. The cartoon associated with Fig. 1
shows the simplified process, studied by many
with which proteins adhere to the interface [18,
42]. The three fundamental steps shown in Part B
are diffusion to the interface and surface tension
lowering, re-arrangement and interaction, with the
last two taking place congruously [3]. Phosphory-
lated proteins, such as highly hydrophilic B-casein
and glycoproteins such as, conalbumin (ovotrans-
ferrin) and ovalbumin are particularly good ‘sur-
face-active polymers’ lowering surface tension to
less than 52 mN/m at 20°C. Ovotransferrin also
serves as an anti-microbial agent because of its
ability to complex metal ions and thus, deprive the
microbe of metabolic nutrients and in this manner
doubles as a therapeutic. Once adsorbed at the in-
terface, inter-molecular interactions for the protein
molecule of the type indicated in Fig. 2, such as
ion-pair formation and entanglement [26, 28, 43-
45] and evidence of species linking, can serve to
modify the mechanical properties of the adsorbed
layer and its architecture.

2.2. Weak and Strong Interaction

The structure of the adsorbed layer formed at A/W
and O/W interfaces described in pictorial form in
Fig. 2 is shown in quantitative graphical form in
Fig. 3 (Part A), described by surface tension val-
ues, for a series of proteins, methyl cellulose
(MeC) and low molecular weight non-ionic surfac-
tant, Tween 20. The figure shows proteins, Tween
20 and MeC alone but also in combination, where
either the concentration of the MeC is described or
the molar ratio (R) of small molecule surfactant to
protein helps to describe bulk compositional ef-
fects on surface dominance and composition [5,
19, 22, 30, 38, 46] in terms of surface prevalence.
Simple solutions containing colloidal protein, or
polymer have characteristic equilibrium surface
tensions, which chart an average surface composi-
tion. On a concentration basis, conalbumin shows
the lowest equilibrium surface tension values, this
indicates a dense surface coverage and a strongly
interacting surface adsorbed layer, represented in
the schematic cartoon also in Fig. 3 (Part B).
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Fig. (1). Surface diffusion and adsorption equilibration plot for four globular proteins (arrowed in the plot), as mod-
els for species with the potential for extensive intermolecular interactions (Part A) using surface tension measure-
ment. Phenomenological representation of the diffusion to, adsorption at, and rearrangement of highly surface-
active polymeric surfactants at a hypothetical surface (Part B). All solutions are made in 0.05 M phosphate buffer,

pH 7.0 unless otherwise stated.

Blocking &
entrapment

\

v

Fig. (2). Representation of the scheme of intra- and
inter-molecular interactions for a range of surface ac-
tive species such as, complexes with surface activity,
classic small molecule surfactants, polymeric surfac-
tants, surface active drugs and proteins.

The Fig. Part A, also shows in phenomenologi-
cal form the surface coverage by Tween 20 alone,
which at approximately 12 uM is about 33 mN/m,
like conalbumin. Proteins and surfactants do not
form the same type of surface architectures [3, 41].
The essential difference between conalbumin and
the Tween 20 lies in the breadth and magnitude of
inter-molecular interactions. With the globular

proteins these are extensive, so as to yield a
strongly-interacted surface layer, whilst with
Tween 20 (an example of a simple surfactant) lat-
eral interaction between adjacent molecules is
weaker but the species itself is able to diffuse rap-
idly to repair portions of poor surface coverage,
generated by thermal and mechanical perturbation
[26, 34], maintaining an even surface coverage.
Combining surface-active polymer, such as MeC
[19] and BSA [29] means poorer surface tension
than MeC alone at equivalent concentrations, thus
pointing toward bulk binding or less effective sur-
face coverage. With Tween 20 and B-casein the
explanation is clearer and has been reported else-
where [3, 40]. Here, interaction between the 24
kDa protein and 1.2 kDa Tween may result in an
association of the two that creates a more surface-
active species than either of the two individual
components [35, 38], without compromising inter-
facial loading and molecular packing.

2.3. Small, Large and Hybrid Molecule Net-
works

Foams generated using 76kDa conalbumin and
Tween 20 (Fig. 4, Part A) represent a macroscop-
ic reflection of the interfacial behavior described
on numerous occasions [27, 36, 41, 47] in foams
and foam films in earlier work. Bubbles in the
foam, which are covered by the protein (these can
be considered as if they were also covered by a
surface-active polymer that has scope for inter-
molecular interaction) in the form of a strongly
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Molar Ratio, R (Tween 20:Protein)
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Methylcellulose concentration (uM)
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— B-lactoglobulin (18 kDa)
|_—~Tween 20 (1.2 kDa)

— Conalbumin (76 kDa)
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Part B
Air or oil
Ovalbumin (45 kDa) Strongly interacting . Weakly
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a-lactalbumin (14 kDa) networl monolayer
1.5 uM BSA (@) + MeC
B-casein (24 kDa)
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Polymeric surfactant
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or proteln

Water

Fig. (3). Surface tension lowering and structure forming capability of protein types as model interactive surfactants,
for ovalbumin (OVA), a-lactabumin (aLA), bovine serum albumin (BSA), B-casein (BCAS), B-lactoglobulin
(BLG) and egg conabumin (CON) are shown, and simple non-ionic surfactant, Tween 20 (T20) and methylcellu-
lose (MeC) (arrowed in the plot) are presented. Pure samples, such as pure BSA (@) and mixtures of protein and
simple surfactant or protein and cellulose derivative are indicated (Part A). Phenomenological representation of the
structures formed by polymers and simple small molecules are shown (Part B). A crossover in the data for BSA,
MeC and BSA with MeC point to binding of the polymer by the BSA to create a more surface active species. All
solutions are made in 0.05 M phosphate buffer, pH 7.0 unless otherwise stated.

cohesive structured film. Whereas, bubbles fabri-
cated from solutions containing simple low mo-
lecular weight surfactants have a thin and mechan-
ically ‘weak’ surface coverage commensurate with
the surfactant and steric restrictions on surface
loading. Both these forms are shown pictorially in
Fig. 4 (Part B). Interestingly, and studied on nu-
merous occasions [3, 30, 41], displacement of pro-
tein from the adsorbed layer, to be replaced by sur-
factant (Tween 20) compromises the water binding
volume of the constituent foam cells and capacity
for foam-entrained water. This has been attributed
to variations of interfacial composition [3, 8, 21,
27, 43] and the mechanical modifications that arise
from surface compositional change. The conse-
quences of such compositional variations, are dif-
ferences in the loading of material at the interface
and of palisade layer protrusion from the bubble
(or droplet) surface into the continuous phase as
pendant tails, loops and chains of the protein (or
polymer), and associated water and steric repul-
sion between opposing faces of the foam film.
This then makes the foam lamellae (thin liquid
films) thinner and means the foam is less dense

[41]. Combinations of simple low molecular
weight surfactant, protein/polymer and surfactant-
protein or surfactant-polymer complexes with sur-
face activity, and the interacted networks they are
able to form, coexist in the plane of the interface
[41].

2.4. Competitive Adsorption and Displacement

Fig. 4 shows in clear form two distinct princi-
ples. These are small molecule surfactants compet-
ing for space at the interface and displace those
surface-active agents, in free form, which cannot
reduce the surface tension down to the values typi-
cally associated with dense small molecule inter-
facial packing. This displacement in the case of the
foams, represented in the Fig. (Part A), means a
lower number of intact and thicker foam lamellae.
This is usually, in foams, seen as bubble bursting
and an increased tendency towards the dispropor-
tionation of bubbles as polymer molecules are dis-
placed or small molecules preferentially adsorb in
so-called “competitive displacement” or “competi-
tive adsorption”, respectively [3, 27, 41]. Alt-
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Fig. (4). Air-in-water or air/water (A/W) foams based on dilute dispersions of colloidal egg conalbumin, also
known as ovotransferrin (@) in absence and the presence of increasing amounts of small molecule surfactant
Tween 20 (polysorbate 20) and those formed entirely from Tween 20 (O) are shown (part A). Phenomenological
representation of the structures formed by polymers and simple small molecules on the surface of <2 mm diameter
bubbles (Part B), not drawn to scale. All solutions are made in 0.05 M phosphate buffer, pH 7.0 unless otherwise

stated.

hough, unfortunate in foams, where proteins stabi-
lize the gas cells within a foam product, such as
egg protein foams or beer foam, this has provided
a great opportunity in the biomedical field, for en-
capsulation of suitable ‘therapeutic surfactants’ in
a near-whole polymeric-surfactant interfacial ad-
sorbed layer (see section 6). Many therapeutic
molecules are akin to surfactants, with lidocaine
and amitriptyline being very obvious examples.
Recent work has considered using this competitive
adsorption phenomenon to ‘house’ API’s on the
surface of therapeutic shampoo foams and emul-
sions [2, 8, 11].

2.5. Molecular Rearrangement and Crosslink-
ing

The molecular re-arrangement associated with
adsorption of amphiphiles at the surface of bubbles
in foams and oil droplets (and pharmaceutical sol-
ids, such as solid particulate drugs) in coarse
emulsions and nano-emulsions can be illustrated
by data in Fig. 5 (Part A) involving an O/W inter-
face and acting contrary to the irreversible adsorp-
tion described by Reichert and Walker [23] but

illustrated clearly by peptide-layer ‘switching’ in
the plane of the interface described elsewhere [26].
The Part shows the ease of adsorbed layer disrup-
tion using the sharp-edge of an interfacial rheome-
ter bicone to the two-dimensional “gelled” ad-
sorbed layer formed by 67 kDa BSA, ovotransfer-
rin and Tween20:BSA at a molar ratio of R = 0.9.
The plot shows how the network formed by both
protein only systems, resists the effect of shearing
at low rates of deformation, largely as a result of
inter-molecular interactions and crosslinking of
material adsorbed in the plane of the interface [28,
32, 42], possibly compounded by the formation of
multiple layers as seen with BSA on metal nano-
particles [29], and finally being broken at much
higher shear rates [34, 48, 49]. The mix of protein
and surfactant data is more complex in some
sense, as initial deformation is permitted to much
higher shear rates but at very high shear rate this
appears to cause interfacial friction between “in-
terfacial aggregates” and increase in measured
shear stress. What is clear from the interfacial rhe-
ogram (Fig. 5, Part A) is that structure of proteins
and polymers adsorbed at the interface is measura-
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ble and significant, as seen clearly in an article in-
volving with galloylated quinic acid tannin-rich
Tara gum and poly(vinyl alcohol) dispersions [50].

Fig. 5 (Part B) shows the storage (G’) and loss
moduli (G*’) crudely analogous to adsorbed layer
“elasticity” and “viscosity” in an A/W system.
Similar rules apply and govern the behavior of ad-
sorbed species, however, as can be seen by careful
comparison with Part A. In Part B inter-molecular
crosslinking between BSA Yyields high interfacial
elasticity, as seen with gelation caused by laccase
enzyme and the polyphenols of pectin [32] and
augmented viscosity. [B-casein has considerable
interfacial elasticity, whilst ovotransferrin has a
weaker adsorbed layer, these are plotted as a func-
tion of standing time, which is not dissimilar to the
terminal values seen for a mixture of Tween 20
and BSA (based on added Tween 20 for measure-
ments made after one hour equilibration), at a mo-
lar ratio, R=0.9. At this molar ratio, the network of
interactions between BSA molecules is substan-
tially compromised and disrupted (analogous to
being dissolved), often meaning bubble rupture in
foams, as comprehensive BSA intra-adsorbed lay-
er interaction has been shown to safeguard bubble
stability [29], and improve poor droplet coales-
cence resistance in emulsion droplets [23, 26, 30].

Part A

o

o £
£ £
Z 71 ‘Elastic )
b network @
7} \l =)
%) =}
(4] e
5 5 o]
n S
@ o
g 1 o
< o
? _Q L o
—Cs ' &

0 104 108 102 101 100 15

Constant applied shear rate, y (1/s)

Open symbols

Current Drug Discovery Technologies, 2018, Vol. 15, No.2 9

2.6. Networks and Architectures

Proof of adsorbed layer interaction between the
positive charges on the protein and those negative
charges of carboxylic acid part-ionized
poly(galacturonic acid), also known as pectin (Fig.
6, Part A) are supported by numerous reports of
interfacial ion-pair formation [24, 44, 45]. Pectin
use in pharmacy is on the increase given the bio-
compatible nature of the substrate, which is being
used increasingly for gel and nanoparticle for-
mation and this is likely to find further use in
pharmacy in the future for a diverse range of sur-
gical and medicinal products [35, 45]. In a similar
fashion to pectin, the protein crosslinking bifunc-
tional agent, glutaraldehyde can be clearly seen in
Fig. 6 (Part A) to aid linking of moieties with the
manifestation of thicker foam films [27]. As a re-
sult of micro-molar inclusion of bifunctional
agent, interfacial proteins in a part disrupted pro-
tein-Tween 20 system at molar ratio, R=0.25 are
united to give better water-binding, and a larger
intra-foam film disjoining pressure and inter-
adsorbed layer repulsion to produce thicker foam
films, as reported with oil droplet O/W films [19,
32]. Notably, adding too much bifunctional agent
simply caused large-scale aggregation and aggre-
gate formation, either destabilizing the film, possi-
bly by causing local depletion of protein or pro-
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Fig. (5). The mechanical properties of oil-water (O/W) surfaces/macroscopic interfaces based on dilute dispersions
of proteins and simple surfactant, Tween 20 in various combinations using a sharp-edged bicone measuring head
located in the plane of the interface. The protein samples featured are, 22 uM BSA (M), 26 uM ovotransferrin
(CON) (A) and 22 uM BSA in the presence of 19.8 uM Tween 20 (molar ratio for T20: BSA, R=0.9) (O). Stress-
strain data at O/W interfaces are shown in part A and the results of oscillatory viscometry at A/W interfaces are
given in part B as a function of equilibration time. In Part B “elasticity’ is represented by open symbols and viscosi-
ty is represented by closed symbols), the same material shapes apply in figure Part A and B. The only modification
to the samples present in Part B compared with Part A is the inclusion of 42 uM BCAS (@, <) in the former. All
solutions are made in 0.05 M phosphate buffer, pH 7.0 unless otherwise stated.
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Fig. (6). The air-water (A/W) foam film (thin liquid film; TLF) values based on dilute dispersions of 50 uM f3-
lactoglobulin (BLG) protein and simple surfactant, Tween 20 (T20) in a combination of T20: BLG at molar ratio, R
= 0.25 using an interferometric method with a monochromatic He-Ne laser light source in the presence of glutaral-
dehyde cross-linker (3%) and negatively-charged pectin (Part A) and divalent magnesium ions (Part B). Phenomeno-
logical representation of the structures, particularly a bound water-cushion that serves to thicken and stabilise foam
films is shown (Part C). All solutions are made in 0.05 M phosphate buffer, pH 7.0 unless otherwise stated.

ducing aggregate particles, which render the foam
film unstable [27].

Insertion of divalent magnesium ions Fig. 6
(Part B), in a similar manner to the aluminum re-
ported previously [27], also results in thicker foam
films. This is assumed to occur because of bridg-
ing between ionized acidic amino acids within the
protein and cations. Just as in the case of using
other bifunctional agents, concentrations of cross-
linker that are too high simply cause mass aggre-
gation (illustrated by the fall-off in foam film
thickness for the glutaraldehyde data in Fig. 6
(Part A)) and this tends to destabilize the interfac-
es of foam films within foams and inter-droplet
liquid films in emulsions [23, 28]. This has nu-
merous applications in terms of the minerals, such
as potassium aluminum sulfate (alum) used in vac-

cines, along with milk and egg proteins (see Table
1) and calcium or phosphate ions. The schematic
representation of interfacial composition and struc-
turing is presented in Fig. 6 (Part C). The Figure
in cartoon form shows what happens to interfacial
adsorbed protein, in-part disrupted in its continui-
ty, by the inclusion of a competing small molecule
surfactant, upon inclusion of a bifunctional agent
[27]. Unification of protein-rich portions of the
adsorbed layer allows “bridging around the impu-
rity (surfactant)” and a partial or near-full re-
establishment of protein network cohesion, water-
binding and prominence at the interface. The larg-
er bound water cushion seen in the system with
incorporated bifunctional agent, means thicker
foam (and emulsion) films and greater short-term
stability against coalescence and disproportiona-
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tion [28, 30, 32, 37]. The consolidation of the pro-
tein part of the adsorbed layer or polymer, in the
case of polymer incorporation, allows mixtures of
large and small molecules to co-exist, where these
compounds would be normally mutually incom-
patible.

2.7. Probing the Adsorbed Layer

In a foam film constituted from a mixture of -
lactoglobulin and Tween 20, at a molar ratio, R=
0.3, where disruption of the protein-protein inter-
action occurs but is not comprehensive it is possi-
ble to chart the freedom allowed to a trace incor-
porated fluorescent probe surfactant with a Cyg ali-
phatic tail (ODAF) using a technique known as,
fluorescence recovery after photo-bleaching
(FRAP) [2, 27, 41]. In the presence of strong and
comprehensive protein-protein interactions and
crosslinking, “compartmentalization” and binding
or restricted presence (estimated by pre-bleach
fluorescence count) shows a restriction to move-
ment of the probe molecule. The technique stands
up well to direct labelling of the protein which
changes the protein chemistry and surface activity
[27].
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The first part of the Figure (Fig. 7, Part A)
shows what happens to the freedom of movement
of the probe molecule, on inclusion of a compound
isohumulone (which represents a sound model of
phloroglucinol compounds, such as the anti-
spasmodic pharmaceutical, flopropione). The re-
duced mobility of the probe, points solidly to the
establishment of enhanced protein-protein interac-
tions [27, 41] and the formation of a more exten-
sive, robust and elastic adsorbed layer on estab-
lishment of crosslinks. Isohumulone (IH) also rep-
resents a good model of a drug compound having a
log P of 5.3 and thus, clearly being poorly water-
soluble and hydrophobic in nature, like a whole
swathe of pharmaceutical actives. The molecule is
represented in cartoon, simplified form in the Fig.
(Part A) and is based on an apolar core, aliphatic
side chains and three minor hydrophilic groups
that are thought to be responsible for the crosslinks
[17, 21, 25, 42, 43, 51] and alter inter-species in-
teractions and subsequent mobility.

The Figure also shows in Part B, the surface
tension combined with dilatational elasticity and
the dilatational viscosity of an A/W macroscopic
interface, and the effect of a fixed concentration of
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Fig. (7). The molecular diffusion of a fluorescent interfacial probe molecule, ODAF in thin liquid films (TLFs)
based on dilute dispersions of 50 uM pB-lactoglobulin (BLG) protein and simple surfactant, Tween 20 (T20) in a
combination of T20: BLG at molar ratio, R = 0.3 in the presence and absence of a hydrophobic drug analogue (oc-
tanol-water partition coefficient, log P= 5.3), based on an aryl ring or similar apolar structure (heavy bordered cir-
cle), aliphatic side chains (zig-zag) and hydrophilic functional groups (small circle) see schematic in Part A. The
hydrophobe is, isohumulone, isolated from hops. Molecular mobility and freedom of movement is evaluated using
a FRAP photo-physics method of adsorbed layer interrogation. The surface tension of the R =0.3 sample, and its
surface elasticity and surface viscosity assessed using surface dilation of a macroscopic A/W interface is shown
with respect to surface-aging and equilibration time (Part B). The terms dilational and dilatational are interchange-
able. All solutions are made in 0.05 M phosphate buffer, pH 7.0 unless otherwise stated.
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Tween 20 and IH. Very noticeably, addition of the
crosslinker causes the surface tension to decrease
and better residence of protein at the interface, and
bearing in mind the system contains competing
surfactant that disrupts the protein-protein interac-
tions [3, 40, 42]. The adsorption of a mixture of
protein, Tween, protein-Tween complex, protein-
IH and IH is manifested as an increase in both sur-
face elasticity and viscosity [26, 43, 49]. This ag-
ing process is revealed even over the short
timeframe of the measurement but noted to take
place to a much greater degree on longer timed
study described by Gao et al. [30].

2.7.1. FRAP, SEM and AFM

The photo-physics technique FRAP has some
profound supportive properties of use, many over
traditional rheological measurements (constant or
damped surface shear, surface oscillation or sur-
face dilation) that by virtue of distorting the ad-
sorbed layer and that take place as part of the
measurement itself [34, 52]. The properties change
and material form can change too, as part of the
measurement, such as promoting viscosity chang-
es. These are assumed to be associated with inter-
facial aggregation, driven by the mechanical action
of portions of the adsorbed surface layer. FRAP
can be used, and has been used in ‘rheological’
context [41] because it measures the ‘freedom’
permitted to the smaller mobile species in the
plane of the interface (Fig. 8, Part A). In this way,
slowing of interfacial mobility for the fluorophore
ODAF, means a greater disruption of interfacial
protein-protein interactions and a change in com-
position, which O/W surface shear (Fig. 5, Part
A), A/W surface tension measurements (Fig. 3,
Part A) and A/W foam composition measure-
ments (Fig. 4, Part A), illustrate is principally dic-
tated by competing low molecular weight (Tween
20) or simple polymeric (MeC) surfactant [3, 11,
19, 27, 41] and replacement of one species prefer-
entially by another.

Molecular mobility and entrapment of the fluo-
rescent probe surfactant, ODAF is shown in Fig. 8
(Part A). The broken lines describe the mobility
of the probe in 0.05 M imidazole buffered medium
(different to all other data) in the presence of triva-
lent aluminum ions, associated with a partly dis-
rupted interfacial adsorbed layer (on increasing
increments of low molecular weight surfactant).
The ability of ions to crosslink adsorbed interfacial
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protein has been described previously [27, 28, 30].
The plot shows the presence of 5 uM aluminum
ions changes the onset of increased interfacial mo-
bility (D) from molar ratio R = 0.5 to R = 0.95.
This is a significant elucidation of the role that
simple ions can play in pharmaceutical and vac-
cine formulations such as those containing the
aluminum salt, alum. Similarly, cations and
selenides were reacted to stabilize the surface of
nanoemulsions in the work of Pigtka-Ottlik et al.
[24]. In a roughly equivalent manner, the plot also
shows the effect of inclusion of 5 uM (+)-catechin,
a hydrophilic polyphenol and close mimic of nu-
merous quinolone antibiotics, such as ciprofloxa-
cin and flavone derivatives, such as apigenin [4,
38, 44, 47, 52] have the ability to act as bifunc-
tional agents. The polyphenol changes the onset of
‘loosening’ of the interfacial structure (measured
as probe molecule increased mobility) from 0.25
uM added Tween 20 in BLG structured foam films
to 0.3 uM. Notably in the Figure the error bars are
of a size, at the largest, approximately equal to the
size of the symbols and therefore, indicate this ‘2D
gelation’ and consolidation of the adsorbed inter-
facial protein to be a real finding, as previously
reported for functionalized polysaccharides in
emulsions [19, 32].

Interfacial rheology involving hydrophilic poly-
phenols (log P~1), such as (+)-catechin or structur-
ally similar pharmaceuticals, can have a drastic ef-
fect on the protein-protein interactions at the surface
of a dilute 5 uM BLG solution with included Tween
20, at R=0.25. Both the surface ‘elasticity’ (dilata-
tional or dilational modulus) and surface ‘viscosity’
(dilational viscosity) increase on addition of sub-
micromolar concentrations of catechin, with moder-
ate concentrations of polyphenol on the plot produc-
ing enhanced elasticity, yet only marginally in-
creased surface viscosity. These findings are entirely
consistent with enhanced protein-protein interac-
tions initiated by inclusion of the polyphenol [14,
47, 48]. Modelling and explanation of the disruption
and re-unification of adsorbed interfacial protein
and polymers has been widely reported [3, 27, 28,
36, 41, 42] across a range of spectroscopic and sur-
face rheological studies.

Surface shear rheological data is presented in
Fig. 9. The plots indicate that the two-dimensional
‘gelation’ of adsorbed protein at an A/W interface
form pure protein (BSA), mixtures of protein and
Tween 20, the mixture in the presence of a cereal
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Fig. (8). Part A: The molecular diffusion of an interfacial probe molecule, ODAF in thin liquid films (TLFs) based on di-
lute dispersions of 50 uM B-lactoglobulin (BLG) protein and simple surfactant, Tween 20 (T20) in a combination of T20:
BLG at molar ratio, R = 0.25 in the presence (V) and absence (V) of 5 uM trivalent aluminum ions as a model of the in-
teraction between vaccine proteins and the formulation aid “alum” (triangles) - notably in 0.05 M imidazole buffer at pH
7.0, and dilute dispersions of 50 uM B-lactoglobulin (BLG) protein and simple surfactant, Tween 20 (T20) in a combina-
tion in the presence (<) and absence () of 5 uM hydrophilic polyphenol (+)-catechin, a model for numerous drug mole-
cules (log P= 1.02), based on an aryl ring (heavy bordered circle) and hydrophilic functional groups (small circle) (see
schematic in Part B). The effect of differing inclusion of (+)-catechin for a 5 uM B-lactoglobulin (BLG) protein solution of
Tween 20 inclusion at R =0.25, and its surface elasticity and surface viscosity assessed using surface dilation (Part B). All
solutions are made in 0.05 M phosphate buffer, pH 7.0 unless otherwise stated.

pentosan (with molecule shown schematically in the
Figure) and the mixture in the presence of catechin.
The natural rye pentosan is chemically derivatized,
with periodic attachment of the ferulic acid poly-
phenol (log P=1.6) to the polymer backbone [14, 36,
48]. Pure protein and peptide or hydrophobic and
lipophilic protein ‘aggregate’, has a considerable
surface shear viscosity and elasticity [26, 30, 43],
consistent with ‘firm’ protein-protein interactions
and may be present as a mix of monolayer or mono-
layer and entrained interfacial aggregates. Making
A/W macroscopic interfaces from mixtures of pro-
tein and small molecule surfactant, reduces both the
viscosity and elasticity of the adsorbed interfacial
layer in a manner entirely consistent with the phe-
nomenon of competitive displacement and competi-
tive adsorption [3, 41]. Arabinoxylan bears consid-
erable similarity [14, 15], in terms of molecular
form, to a range API’s of the macrolide class of an-
tibiotics such as, erythromycin and azithromycin,

and is not dissimilar in a crude sense, to B-lactam
molecules, such as penicillin and benzylpenicillin
[39], although it is somewhat larger in size (macro-
lides and B-lactams are approximately 0.1% of the
size of the pentosan).

Equilibration of solutions containing a much
higher proportion of Tween 20, compared to protein
in Tween 20/BSA solutions, R=1.5 with a concen-
tration of 3 uM highly water-dispersible arabinoxy-
lan (log P= -3.2) incorporated are presented in the
inset in Fig. 9. With time, the elasticity of the sur-
face adsorbed layer increases, while the viscosity is
decreased. Again, this is entirely consistent with the
forging of mediated protein-protein interactions in
the plane of the adsorbed layer and supports find-
ings from interferometric measurements of foam
film thickness, surface shear rheology and FRAP
studies [3, 27, 41, 42], which chart the surface
chemical composition and its effect on rigidity. Oth-
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Fig. (9). The mechanical properties of air-water (A/W) surfaces/macroscopic interfaces based on dilute dispersions
of proteins and simple surfactant, Tween 20 in various combinations using a sharp-edged measuring head located
in the plane of the interface (undertaken at the Max-Planck Institute in Berlin on a customised device). The protein
samples featured are, 1 uM BSA (O, elasticity), 1 uM BSA + T20, R = 0.05 (M, viscosity) and (L, elasticity). The
R = 0.05 sample with 1 nM hydrophilic polymer with ferulate-hydrophobic side chain (shown in the schematic),
arabinoxylan (AXN) polymer added in terms of its elasticity (A) and viscosity (A) is also shown alongside the vis-
cosity of 0.1 uM (+)-catechin (®). The inset shows the improved mechanical effect of arabinoxylan inclusion on
much more fractured R = 1.5 adsorbed layer surfaces in the presence of 3 uM arabinoxylan polymer as a function

of standing time.

er techniques, such as atomic force microscopy
(AFM) and scanning electron microscopy (SEM)
can also be used alongside more traditional forms of
surface structure evaluation by applying as little as
piconewton forces [2, 53].

Microscope-based examination of the materials
adsorbed on the surface of 200 nm polystyrene la-
tex nanobeads, can be used to deduce the composi-
tion and mechanical properties of adsorbed mate-
rial. Techniques such as, AFM and SEM can be
used to describe the architecture of polymers built-
on the bare nanobeads (Fig. 10, Part A). AFM is
perhaps more useful because the tapping mode of
measurement (cantilever resonance ~ 295 kHz)
can be used to deduce the phase lag in the vertical
plane between input and output signal and there-
fore, deduce a change to any tip oscillation
through ‘damping actions’ from material being
either absent (hard contact) or present (soft sur-
face) on the bare particle surface (Part B). Block
copolymer of the form illustrated in a highly gen-
eralized cartoon form in Fig. 10 (Part C), such as
Pluronics (poloxamers) and Tetronics (poloxam-
ines) are highly surface-active and adhere to hy-

drophobic nanoparticles of substrates, such as pol-
ystyrene latexes [9, 19, 20, 44, 46, 50] to form a
surface cushioning. The form of surface-active
polymer adsorbed on surface, which if then dried
to equilibrium humidity, preserves the ‘solution
form’ of the polymer and consequently, allows the
near-dry samples to be prepared for a ‘dry-type’ of
examination.

The damping quantifiable by phase lag meas-
urements can be used to chart the form of the sur-
face-active block copolymer adsorbed on the bead
(Fig. 10, Part C). Part C shows the phase lag for 3
different surface polymer compositions; line 1 rep-
resents the form seen for a bare latex nanobead,
line 2 for the same beads but now covered with
polymer from a solution containing 55 pg/ml
poloxamine and line 3 for the same beads with
polymer from a solution containing 300 pg/ml
poloxamine. The significant part of the plot really
lies in the data accrued from the middle or top of
the particle, before the shape of the spherical bead
curves away from the measurement tip (h = 0 to 60
nm). Tangential contact with the bead with the
AFM tip, also contains rheological information but
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is not as clear to decipher [2]. Line 1 (image C)
represents a hard, high phase lag surface of a bare
bead (B~37°) and as increasing amounts of poly-
mer are adsorbed, line 2 and line 3 (image D), re-
spectively, on the particle surface, in equilibrium
with contents of the dispersion solvent the phase
lag is altered from that of the bare particle. Hy-
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used to directly measure the loading of polymer on
a latex material [54].

2.8. Dissolution of Molecular Interactions

The weight of evidence now pointing to the dis-
ruption of surface adsorbed polymer by small mol-

ecule surfactants is now considerable and exten-
sive, covering a period of more than 20 years [3, 8,
11, 41, 50]. Disruption of networks of principal
component and the fabrication of channels, in
which therapeutics is loaded, is now a real possi-
bility. Combinations of studies involving surface
tension estimation at A/W and O/W interfaces,
surface shear and dilatational rheology, interfero-

pothesizing the practical meaning of lines 2 and 3,
this suggests the polymer molecule is adsorbed in
flat pancake-like surface (6~12°) hugging and ex-
tended (6~8°) pendant (brush) forms, the latter be-
ing the least damping, which does not modulate
AFM tip oscillation as much as the bare surface.
These findings are confirmed by assays have been
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Fig. (10). Part A: top to bottom, atomic force microscopy (AFM) in tapping mode of polystyrene latex nanobeads
dried to 55% relative humidity from solutions. Image A shows an AFM image of beads measured in terms of verti-
cal height, in the presence of Pluronic F108 adsorbed polymer and image B shows the same latex beads but cap-
tured using scanning electron microscopy (SEM), at magnification x15000, these serve as control images. Part B
from top to bottom, shows the phase lag data captured by tapping mode data collection. Panel C shows bare latex
beads of about 200 nm diameter; panel D shows the same beads but covered with a loading of a solution containing
300 pg/ml poloxamine 908 hydrophilic block copolymer. The polymer is frequently used in drug delivery applica-
tions. Part C shows direct nano-rheology data (phase lag) in traversing the surface of the bead from the centre to its
margins. In the plot, line 1 (<), refers to image C, line 2 (®) to a surface loading achieved in a 55 ug/ml polox-
amine 908 and line 3 (A) is from image D. High values in Part C represent no loss of signal and low values repre-
sent a damping of the movement of the probe tip synonymous with a soft palisade layer of adsorbed material. All
solutions are made in 0.05 M phosphate buffer, pH 7.0 unless otherwise stated.
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metric measurements of foam film thickness,
FRAP and AFM can now be used alongside com-
plementary techniques, such as photon correlation
spectroscopy (PCS; light scattering) to reveal in-
sights into molecular interaction in the plane of the
adsorbed layer material. Dissolution or part-
dissolution of the array of interactions between
and within complex hetero-polymer molecule net-
works, such as adsorbed proteins and nucleotides
is entirely feasible. Therefore, it is possible to en-
gineer the properties of therapeutic foams and
emulsions [5, 8, 11, 12, 16, 20, 22, 43, 45, 47, 55]
by using complementary mixes of amphiphilic soft
matter assemblies and solid suspensions to ‘house’
drug in the adsorbed layer, which adds another
possibility for the notions of a controlled release of
drug, particle loading with therapeutics, encapsula-
tion [10, 16, 39, 45, 46, 47] of valuable species
and also for housing quantum dots and plasmon
generating nanoparticles for diagnostic medical
uses described at length by Bazylinska et al. [56].

3. BIFUNCTIONAL AGENTS AND THEIR
ROLE IN INTERACTIONS WITHIN THE
‘FRACTURED’ ADSORBED LAYER

A number of publications now consider the use
of bifunctional agent, which if suitably chemically
charged or functionalized, with respect to a sub-
strate can be used to crosslink interfacial species
and restore or optimize rheological properties [34].
The restoration can be based on hydrogen bonding
or formal covalent bond formation, as possible
with amino-carbonyl bond formation e.g. glutaral-
dehyde and the amine groups of lysine, in proteins
or equivalent groups in polymeric surfactants
(Figs. 6-8) and therapeutics. Restoration can be
based, in part on complexation of competing sur-
factant by a polymer, such as a protein, thus effec-
tively removing the disruption of the protein-
protein interactions [34, 43]. lon-pair formation as
a result of electrostatic interaction is also possible
for polyions [45] and simple species (Fig. 6).

When bifunctional agents are also therapeutics,
such as insulin or polyphenol analogues (flurbi-
profen, ketoprofen, pine tannins [57]) and oxidized
polyphenols/quinones (e.g. quinolone drugs, such
as ciprofloxacin), then loading of the adsorbed
stabilizing layer of foams and emulsions is made
entirely possible. The loading is further aided if
the therapeutic is surface-active, such as lidocaine,
amitriptyline, methotrexate, insulin, nerve growth-
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stimulating polyphenols (e.g. apigenin [52]), OTC
terpenoids (e.g. citral, levomenthol, limonene),
psycho-active phenothiazines [10] (e.g. thorazine
and stelazine) and phloroglucinol. Conveniently,
many drug compounds contain unsaturated aro-
matic rings and aliphatic portions, and are often
heterocyclic in character but with polar functional
groups such as carboxylic acids groups, amines
and hydroxyl groups that lend themselves to
providing some degree of surface-activity [5, 17,
38] to the molecule. Partition coefficients, such as
log P are usually a good indicator or surface-
activity in simple molecules, with values of zero to
one, usually indicating water solubility and values
of three to six usually indicating poor water solu-
bility or dispersibility. This is not always clear
with proteins and peptide drugs, as they contain a
mix of hydrophobic and hydrophilic amino acids
and thus often have low log P values, yet act as
very good polymeric surfactants [28, 33, 34, 40,
41] as evidenced in foam formation because of
possessing hydrophobic amino acid-enriched por-
tions and domains.

4. APPLICATION OF PRINCIPLES TO
DRUG BASED MODELS

Using simple models of interfacial structuring
and composition, delineated by a number of di-
verse physical techniques it is possible to describe
and characterize the surface of coarse dispersions
used in therapeutic or functionalized systems de-
scribed by Thomas et al. [58]. Solid dispersions of
drug particles, therapeutic foams, such as those
based on cortico-steroidal drugs used to treat local
inflammation, irritable bowel syndrome, and ec-
zema and a vast array of emulsions used to solubil-
ize therapeutic species, such as OTC fat soluble
vitamins, hugely apolar OTC antifungal drugs
(miconazole and terbinafine) and hormones, such
as estradiol and testosterone frequently use poly-
meric and simple emulsifiers. In fact, this blending
of the two or more ‘surfactants’ has been used for
some time in pharmacy to give a surface covering
of droplets with a combined surface loading to
maximize process stability [9, 12]. The natural ex-
tension to this notion, is to use the drug (surfac-
tant-like in character) to interact with the principle
surface-active agent used to fabricate pharmaceu-
ticals and vaccines. These simple emulsifiers and
larger surfactants are very often polymeric in na-
ture, such as alginate [14, 45] and used in thermo-
sensitive applications, the hydroxypropyl version
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of methylcellulose [19] (hypromellose), acrylates
(Tergitol, Carbopol) or amphiphiles based on
poly(ethylene)-poly(propylene) oxides (Pluronics)
are also used in pharmaceuticals [22, 43]. Such
excipients are frequently pharmaceutical grade
polymeric surfactants or the proteins, such as gela-
tin, egg albumin or milk proteins in vaccines.

4.1. Interfacial Complexation of Drugs

A background understanding (Fig. 1 and Figs. 3-
9) of interfacial coverage by surface active polymers
can be used to garner an understanding of the behav-
ior of polymers [48] and wetting or surface-
stabilizing agents in therapeutic products. In addi-
tion, studies involving bifunctional agents, such as
alginates [24, 27, 45] are helpful; in that they de-
scribe the manner in which, substances can be in-
corporated into the adsorbed layer of a foam film or
emulsion droplet, whilst retaining a therapeutic bio-
availability. Medicinal products are complex com-
modities with ‘actives’ and excipient components.
Vaccines and peptide hormone-based pharmaceuti-
cals are yet more complex, as maintaining the mo-
lecular integrity of the proteins, polysaccharides,
surfactants and lipids (most of the components listed
in Table 2, with the exception of ODAF) is abso-
lutely essential to their biological functioning [9].
Such complex component mixtures with varying
interfacial compositions and architectures [19, 20,
22, 55] of rafts, suprastructure and channels are not
only pre-requisites of therapeutic efficacy but also
of suitability, compatibility and quality [1, 2, 9, 11,
17, 35] with features that aid active sequestering and
encapsulation. Architectures can be made to be
‘trigger’ release or activation of a drug as a result of
local conditions, such as by chemical modification,
thus possessing sensitivity or responsiveness to
temperature [22, 45, 49] or pH changes as seen with
polysiloxanes [21].

Fig. 11 is complex and comprises of three main
parts. Part A shows the A/W surface tension ver-
sus concentration for two well-used therapeutics,
lidocaine and amitriptyline. Both drugs are hydro-
phobic in nature (represented phenomenologically
in the cartoon). As such, they both demonstrate
considerable surface-activity on their own. Both
surface tension plots show the surface tension line
for the Pluronic surfactant F68 (Flocor), used
ubiquitously in pharmaceutical and biomedical
dispersions. Interestingly, as observed in the pre-
vious studies with lecithin and protein [41], cross-
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over of the line for a mix of a set concentration
and increasing addition of drug and those of the
pure drug and pure polymer hint at the formation
of a surface-active ‘complex’ [4, 38] (or at least an
‘associated’ entity), which is able to sometimes
lower the surface tension better fashion than the
polymer it contains (top plot) or less well than ei-
ther the pure polymer or pure drug (bottom plot) at
some critical concentration.

4.2. Inclusion of Drug Molecules in Interfacial
Architectures

Part B of Fig. 11 shows surface tension at the
top, and macroscopic interface surface shear vis-
cosity at the bottom. Both plots are for the steroid
drug, betamethasone valerate, Pluronic F108, ster-
oid, steroid and Pluronic (with fixed Pluronic con-
centration) and lysophosphatidylcholine (LPC),
used for comparison. The top plot shows the A/W
surface tension of a mixture of betamethasone and
fixed Pluronic concentration to be lower, at equiv-
alent concentrations to that of drug alone, Flocor
alone or LPC alone across an increasing concen-
tration of steroid. This means that the ‘molecular
hybrid’ of betamethasone and Pluronic is more
surface-active than any of the individual compo-
nents. Notably, in the surface shear data, the inter-
facial viscosity of the mixed system is higher than
that of either the pure drug or pure polymer and
much greater than that of LPC. A significant
change in interfacial structuring [3, 33, 49, 52] and
the magnitude of lateral interactions between adja-
cent adsorbed molecular species of the polymer
adsorbed layer can be inferred from this rheologi-
cal data involving inclusion of the drug. Fig. 11
(Part C) shows the surface tension at the top and
solid-water (S/W) particle diameter measurements
using PCS light scattering at the bottom. The par-
ticle sizes represented are those accounting for the
hydrodynamic diameter of adsorbed layer built on
to a spherical silica core. Silica is frequently used
in pharmacy to bind antibiotics by crosslinking or
association, as reported for propylacrylamide [58],
also prior to formulation of a coarse dispersion of
drug particles with sterile water, and to aid uni-
form dispersal throughout the medium [1, 29].
Again, as with the betamethasone, the poloxamer-
insulin combination is shown to be highly surface-
active and distinct from the curve for either pure
poloxamer or pure drug. The indication is that a
molecular complex formed between the insulin in
terms of its hydrophilic (e.g. serine) and hydro-
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phobic (e.g. tyrosine) amino acids and the hydro-  4.3. Drug Delivery Nanoparticles and Lipo-
philic and hydrophobic portions of the poloxamer.  somes

The lower element in Part C shows how the aver-
age particle diameter is consistently (error bars are
of the size of the symbols) higher, when net-
negatively charged insulin is combined with cati-
onic chitosan [9] and hydrophilic-hydrophobic
Pluronic, than particle coverage with any mixture
containing only one additional ingredient in addi-
tion to the silica. This points at the formation of
possible multilayers of protein and other polymers
and the formation of a complex architecture re-
vealed by the increase in diameter [41].

Fig. 12 is based on describing the encapsulation
of cytotoxic anticancer drugs in the adsorbed lay-
ers of surfaces in A/W dispersions, measured us-
ing surface tension and the S/W interfaces of lipo-
somes formed from the membrane phospholipid
di-palmitoylphosphatidylcholine (DPPC) and cho-
lesterol, a membrane intercalation aid and leaflet
stiffener [2, 38], measured using PCS light scatter-
ing. The complex [11] formed between the drug
methotrexate and Pluronic F68 shows a distinct
difference to that of either pure drug or pure poly-
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Fig. (11). Part A: shows the surface tension crossover for a mixed sample of increasing moderately hydrophobic
anaesthetic drug lidocaine and with fixed 10 M polymer Pluronic F68 (@) and F68 alone () in surface tension in
the top plot for moderately hydrophobic lidocaine (O) having a log P of 2.6. In the bottom surface tension plot for
the data for hydrophobic amitriptyline alone (CJ) and in the presence of 10°2° M Pluronic F68 (a) is also represent-
ed alongside F68 alone (A). Part B: top panel shows surface tension, with log P = 3.8 hydrophobic cortico-
steroidal drug betamethasone-17-valerate (<>), polymer Pluronic F108 (1), 10° M Pluronic F108 with variable
betamethasone-17-valerate (@) and 2:1 palmitoyl-stearoyl L-a-lysophosphatidylcholine, LPC (A). The bottom
panel of Part B shows the surface shear viscosity for the cortico-steroidal drug betamethasone-17-valerate (<),
polymer Pluronic F108 ((J), 10® M Pluronic F108 with variable betamethasone phosphate (®) and L-a-
lysophosphatidylcholine, LPC (A), respectively. Part C: top panel shows the polar, water dispersible (log P ~ -0.5)
therapeutic protein insulin (a), surface active polymer Pluronic F108 (V) and a mix of 10" M Pluronic F108 with
variable insulin (@). The bottom panel of Part C shows the increase in hydrodynamic diameter of near neutral
charged spherical silica nanoparticles as determined by light scattering on inclusion of 5 kDa moderate molecular
weight chitosan (<), surface active hydrophilic polymer, Pluronic F108 (a), 5.8 kDa insulin (V), and a mixture
involving 10 M Pluronic F108, 10 M chitosan and increasing concentrations of insulin (#). The zeta-potential or
surface charge of the mixture is also indicated. All solutions are made in 0.05 M phosphate buffer, pH 7.0 unless
otherwise stated.
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meric surfactant and indicates the formation of a
complex (Part A). It is possible that there is a co-
valent linkage between drug and polymer, since
the drug has several amine groups within its struc-
ture and the ether or free hydroxyl group of the
polymer may allow a formal molecular interaction.
This synergistic relationship is also shown to be
the case when liposome hydrodynamic diameter
was measured and this is thought to be associated
with the formation of multiple consecutive layers
in a process known as layer-by-layer fabrication
[9, 29] of lecithin, poloxamer and charged drug.

Fig. 12 (Part B) shows the surface tension data
for doxorubicin and the hydrodynamic diameter of

Part A
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liposomes again based on DPPC and cholesterol in
the presence and absence of drug. The surface ten-
sion data points clearly at the formation of a drug
Pluronic F108 complex because of the cross-over
in the surface tension plot whilst also showing a
difference between fixed drug quantity and in-
creasing polymer and fixed polymer and increas-
ing drug content, varying the drug content give a
line, which is dissimilar from the pure drug but
also distinct from the line for increase polymer.
The size data measured at the vesicle S/W inter-
face shows the difference in DPPC vesicle size on
addition of both polymer and doxorubicin over and
beyond that of the doxorubicin on its own. This
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Fig. (12). Part A: shows the surface tension crossover for a mixed sample of increasing hydrophilic cationic cyto-
toxic drug methotrexate and with fixed 10* M polymer Pluronic F68 (®) and F68 alone (a) in surface tension in
the top plot for hydrophilic cytotoxic drug methotrexate (V), having a log P of -1.8. The bottom panel of Part A,
shows the increase in hydrodynamic diameter of liposomes of di-palmitoylphosphatidylcholine (DPPC) as deter-
mined by light scattering on inclusion of methotrexate (<>), and a mixture involving 10* M Pluronic F68 and in-
creasing concentrations of methotrexate (#). The diameters for bare DPPC liposomes (O) and DPPC liposomes
with F68 inclusion (V) are also represented in the lower scheme within part A. Part B: top panel shows the moder-
ately hydrophobic but water dispersible (log P = 1.3) cytotoxic drug, doxorubicin (V), surface active polymer Plu-
ronic F108 (a), a mix of 10* M doxorubicin with variable Pluronic F108 (#) and a mix of 10 M Pluronic F108
with variable doxorubicin (<). The bottom panel of Part C shows the increase in hydrodynamic diameter lipo-
somes of di-palmitoylphosphatidylcholine (DPPC) as determined by light scattering on inclusion of increasing
doxorubicin (<) and a mixture involving 102 M Pluronic F108 and increasing concentrations of doxorubicin (#).
All solutions are made in 0.05 M phosphate buffer, pH 7.0 unless otherwise stated.
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points at inclusion of the poloxamer in the leaflet
of the liposome and hydrophobic association of the
doxorubicin with the poloxamer, in a similar fash-
ion to the telodendrimer described by Jiang et al.
[20] to give particles, which were double the di-
ameter of liposomes with trace quantities of drug
[3, 20, 25, 41, 43] but possess the prerequisite hy-
drophilicity to aid long-acting therapeutic ability.

5. FUTURE OPPORTUNITIES

The faces of both the pharmaceutical sciences
and of commercial therapeutic products, their work-
ing and diversity are changing toward the direction
of smarter, purpose-designed fabrication. Increas-
ingly complex versions of therapeutic products are
needed to ensure their medical suitability, and this
requires not only more careful consideration of the
material itself but also the impact via complexation
and surface adsorption of drugs, functional excipi-
ents and a range of combination products [12, 25,
30, 31, 36, 43, 44] that possess these properties. Sol-
ids, macromolecules and simple surfactants in com-
bination can all be used to functionalize bubble and
droplet surfaces. A cartoon representation of the
processes in action at the surface of drug delivery
system containing nanoparticles and aggregates is
shown phenomenologically in Fig. 13. The Figure
attempts to summarize the diversity of surface forms
seen in simple “protein-surfactant” combination sys-
tems (Figs. 3-5), and combination systems with bi-
functional agents (Figs. 6-9), used as the basis of
understanding less frequently studied drug-
surfactant interactions [8, 10, 20, 43, 44, 51, 56],
which show promise and significant interfacial be-
havior [4, 18, 35, 38, 50] that can be utilized in vari-
ous foam and emulsion systems. More importantly,
a clearer understanding of pharmaceutical and vac-
cine dispersion interfacial properties, is made possi-
ble by consideration of better understood interfacial
behavior (Figs. 3-8). Consequently, in the figures
based on solid-in-water (S/W) drug dispersions
(Figs. 11-12), with functional polymeric surfactants,
liposomal phospholipids, silica [58] and licensed
therapeutic molecules, it becomes possible to inter-
polate between the ‘known’ and the ‘unknown’,
since identical physico-chemical principles drive the
processes (overall behavior) occurring at the inter-
face. Fig. 13 shows the interfacial structure of
pharmaceutical foams, with their constituent bubble
or gas cells and the emulsion droplets [19], typical
of creams, lotions and parenteral injectable medi-
cines. In the figure, a gross simplification, merely to
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aid the eye, means circles representing surface-
active species. Shading of the circle points to the
chemical form of the surface-active agent, which
may be drug and possibly a surface-stabilizing agent
or complex (or association structure) formed be-
tween the drug and stabilizer. Three combinations of
any of these three amphiphiles is possible, these are
lone (individual) molecules, a small cluster (aggre-
gate) of interacted molecules or an entire network of
interacted particles (Fig. 13), analogous to a two-
dimensional gel. The interaction can be diverse or
simple, usually being complex, where proteins and
hetero-polymers or drugs with multiple functional
groups are concerned [3, 6, 41, 56]. There is and has
been considerable debate [33, 40, 41] as to the form
of such an adsorbed layer, which may change from a
simple monolayer to multiple layers or strata, with
varying degrees and depths of entanglement and in-
terconnection (Fig. 2) of the primary and minor sur-
face-constrained species. Previous studies with pro-
teins, being based on many other findings, have
largely indicated the presence of the latter for com-
plex polymeric surfactants [3, 33, 34, 42, 50]. Sim-
ple monolayers are considered to be more prevalent
with dispersions stabilized by smaller low molecular
surfactants based on structural compositions of a
simple head-group and aliphatic portions [5, 8, 41,
51, 54].

Areas currently challenging and exciting the
physical science community in drug product de-
velopment and drug-related physical chemistry
(pharmaceutics), include those of, polymers for
novel uses, novel biological sources [14, 31] but
essentially with biocompatibility, controlled re-
lease of actives and environmental sensitivity or
responsiveness. The latter is sometimes referred to
as built-in intelligence or product smartness. This
smartness is difficult to build-in because unlike
many chemical engineering applications, medicine
excipients must be non-toxic, yet functional. This
means many past sources of the plethora of agents
used for cosmetics, pharmaceuticals and vaccines
include agents from food sources [9, 14, 19, 29,
31, 46, 47] as primary or background components
of these commodities could be useful. Models of
liquid-liquid [19, 23, 55] and gas-liquid [5] inter-
faces explain the behavior well for similar simple
pharmaceutical and medical products but are at
odds with behavior in terms of complex simple or
multi-phase coarse solid or crystalline particle
suspensions; involving solid-water or solid-oil in-
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terfaces. This is because spatial confinement and
restrictions to phase penetration, unlike water or
oil continuous and dispersed phases [19], can be
expected to mean differences in the polymer con-
formation. These are thus, unlike those of solid-
state near-dry AFM measurements (Fig. 10), dis-
similar to those measurements using an agueous
buffered medium for light scattering and ¢-
potential measurements (Figs. 11 and 12) but also
arguably distinct from those using FRAP - probe
mobility measurements (Figs. 7-8), interfacial rhe-
ology (Figs. 5, 7-9, 11) and interferometric meas-
urements of foam film thickness (Fig. 6), exactly
because of this confinement.

A starting point however, is needed and the ar-
ray of techniques and disclosures (Fig. 1; Figs. 3-
10) when combined do help to clarify what is im-
portant. They indicate which physico-chemical
properties [38] are pivotal to function and which
components can be manipulated for modification
of interfacial properties and interfacial loading.
One very important discovery has been the use of
bifunctional agents (Figs. 6-9), which are able to
unite regions of the adsorbed interfacial material
[14, 27, 32]; these may be drug, excipient of back-
ground component as found in many vaccines.
Consequently, promising additions for new forms
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of drug delivery and controlled release of actives
(drugs) are now frequently used in state-of-the-art
pharmaceutic and formulation developments. Such
developments have included, use of polyphenols
as antimicrobial agents [15], Pickering emulsions
using solids [55], surface mechanical property
‘switching” with peptides in emulsions [26] and
defined aggregation number as in the case of
telodendrimer encapsulation of cytotoxic drugs
[20]. In addition, polymer-surfactant [4, 35, 43]
and drug-surfactant complexes to aid drug delivery
[9, 10, 20, 30, 32, 44, 46, 51] in colloidal and
nano-scale structures, irreversibly adsorbed surfac-
tant layers in emulsions [55], cationic surfactant-
stabilized organo-selenium nanoemulsions [24],
hybrid foams based on emulsions [8, 25, 39] and
cellulose nanofiber based stabilization of foams
[7] also represent outstanding new developments
in pharmaceutical physical chemistry. A mecha-
nistic overview of why and how dispersions can be
optimized is sometimes omitted in favor of thera-
peutic efficacy, however the two processes need
not be mutually exclusive. Recent in-depth work
does indeed concentrate on the molecular mecha-
nisms in action and their mechanical manifestation
with liquid-liquid, liquid-air and liquid-solid inter-
facial adsorbed material, including complexes and

2D adsorbed layer of:

Drug (@)

Surfactant species (Q)
Drug-surfactant complex (Q)

Liquid emulsions
(oil/fat)*

D, q
* - In the case of solids penetration into dispersed phase
and thus species interfacial orientation must be modified

Bold arrows point to the interface

Fig. (13). The molecular interaction and freedom of lateral diffusion of species in the interfacial layer is represent-
ed phenomenologically. The mechanical properties and amount of associated solvent are entirely dictated by the
profile of constituents of the adsorbed interfacial film of polymer, small molecule surfactant or drug species, which
may be polymeric in nature or merely a simple amphiphile. The therapeutic entity entrained in the adsorbed film
need not be surface active, such as simple ionic species, if it is complexed and bound to a species which shows sur-
face active characteristics. Once all components are adsorbed at the surface there is capacity for a change in archi-
tecture based on the scope and range for a variety of interspecies interaction indicated in Fig. 2. Proteins and pro-
tein-based drugs are particularly powerful at forming intermolecular interaction between themselves because of the
possibility of ionic, hydrogen, covalent, apolar and disulphide bridges and bonds.
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architectures [19, 20] involving therapeutic mole-
cules [10, 21, 39, 43, 46, 51] of key medical sig-
nificance.

CONCLUSION

A survey of past and present pharmaceutical
science innovations and pragmatic drug delivery
solutions shows it is both desirable and feasible to
encapsulate drugs within solids, such as
poly(caprolactone) beads and polymer micelles or
hollow nanocapsules such as liposomes and
nanoshells allowing both selective of differential
containment and control over release. This minia-
ture-scale and uniform distribution simultaneously
aids therapeutic targeting and efficacy. Architec-
tures and particles of this type have been used for
some decades [2]. Recently, additional interest has
been raised for the approach of surface functional-
izing particles, such as latex beads, nanoemul-
sions, solid lipid nanoparticles and lipid nanocap-
sules for intravenous delivery. These entities are
often referred to as nanomedicines because of their
use of natural materials and thus, greater much
improved biocompatibility over native non-
modified forms. Additionally, to a large extent and
because of this modifying chemistry they have an
increased chance of regulatory approval. Since
there are already greater than 100 products of this
type that have been created and approved (and
many more in late stage clinical trials), new drug
product filings in this class stand a greater chance
of commercial release. Coarse dispersions (with 1-
200 um-sized dispersed phase components) such
as, fine-cell foams, gels, suspensions and emul-
sions and related products, such as transdermal
patch technologies, together with nanomedicines
(approximately 50-150 nm-sized objects) represent
a strategically valuable 20-30% of all medicinal
products. This is despite solid dosage forms such
as, tablets and capsules currently being the most
common form of dosing a pharmaceutical (at ap-
proximately 60% of all drugs). This is not the case
for vaccines however, since most vaccines are
‘mixed systems’ of oil, microbial lipid and solid
material dispersed in a thickened emulsifier and
‘protein-laden’ aqueous dispersion, and are conse-
quently, best thought of as low dispersed phase
O/W emulsions in the main. Solids and semi-
solids of the nanoparticle type used for intravenous
delivery are to some extent more robust than
coarse dispersions, particularly with respect to
temperature and its sometimes disastrous effects
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on dispersed phase form. However, some drugs
simply cannot be formulated in solid form because
of poor aqueous solubility, potency issues and in-
herent toxicity and therefore, need to be formulat-
ed in colloidal or coarse dispersion form. All
coarse dispersions due to their metastability suffer
from difficulties of guaranteeing the microbiologi-
cal safety and its assurance balanced against phys-
ico-chemical instability as a result of heavy hyper-
baric or thermal processing.

New prospects for binding and housing high
doses of drugs (a significant payload e.g. 70% by
volume) not only within but also upon the surface
of carrier vehicle particles means the potential for
new gateways to the purposeful use of multiple
therapeutics in ‘cocktails’ of encapsulated drugs.
Alternatively, at the simplest level, to provide ful-
ly-loaded nanoparticle and coarse dispersion parti-
cles with a maximum amount of drug, which in-
turn would mean less frequent dosing. This is
highly desirable for cytotoxic drugs in order to cut
down cell apoptosis effects, such as tissue necro-
sis. It is not currently possible to exceed approxi-
mately 25-60% encapsulation ratios in dispersions
for most drugs. Consequently, increased loading
combined with complexation would provide the
possibility for controlling the efflux of drug from
the carrier and this would ensure safety and reduce
side-effects. Pharmaceutical scientists are now ful-
ly aware of the opportunities for both modifying
surface texture and increasing the encapsulation of
drug in a more efficient manner. For coarse emul-
sions, such as anti-fungal and cortico-steroidal
creams, modification of surface rheology had been
shown to improve or extend shelf life by slowing
down the rate and ease of coalescence [23] on
droplet compaction or increased phase fluidity by
thermal stressing and dispersed phase mobility in
Ostwald ripening. Similar possibilities exist for
pharmaceutical foams [12], although they are
much less commonly used. However, dispersions
of solids covered with functional polymers do pre-
sent a huge opportunity for significant improve-
ment to current practice and chances for revolu-
tionary, life-changing new products [27, 56].

A fuller understanding, accrued from many of the
fundamental and cross-disciplinary approaches of
the combination of drug (bifunctional agent) and
surfactants [17], and the role of complexes in sur-
face functionalization will go a long way towards
creating a new generation of products from pharma-
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ceutical scientists, to whom fabricating a better
pharmaceutical and therapeutic product is now
based on physics and physical chemistry. What
sounds easy to invoke in a review, is actually much
more difficult to put into practice. For example,
many drugs are poorly water dispersible and so do
not disperse in water in the first place, in order to
make a foam or emulsion. Such hydrophobic parti-
cles tend to initiate rupture of the interstitial aqueous
films or TLFs [2, 41] separating oil droplets, gas
cells and solid particles [7, 27]. This happens be-
cause the particles are often poorly wettable and so
have a large water contact angle. Hydrophilic drugs
on the other hand, may possess marginal surface-
activity and may also be devoid of the appropriate
pendant functional groups to facilitate inter-
molecular interactions. From earlier work, and in
appreciation of much current literature what seems
difficult to engineer generically is the ratio of prima-
ry surface stabilizing agent and that of the active
pharmaceutical ingredient or therapeutic species to
the extent where surface rheology and texture is not
compromised but where sufficient cavities and de-
fects in the architecture [19, 20] and network have
been created to allow a substantive incorporation of
therapeutic. Finding the middle ground and the ideal
situation is far from easy. This does become more
facile when the drug itself is a bifunctional agent
with the ability to attach to the primary surface func-
tionalizer or is surface-active permitting co-
adsorption with the principal surfactant. This area of
investigation is new, challenging and exciting with
many opportunities for ingenious design and devel-
opment in the fabrication of more useful therapeu-
tics.
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