23,695 research outputs found

    Second Law Violations in Lovelock Gravity for Black Hole Mergers

    Full text link
    We study the classical second law of black hole thermodynamics, for Lovelock theories (other than General Relativity), in arbitrary dimensions. Using the standard formula for black hole entropy, we construct scenarios involving the merger of two black holes in which the entropy instantaneously decreases. Our construction involves a Kaluza-Klein compactification down to a dimension in which one of the Lovelock terms is topological. We discuss some open issues in the definition of the second law which might be used to compensate this entropy decrease.Comment: 15 pages, 1 figure, v2 Title change & minor revisions to match published version, v3 fixed accidental deletion of author name

    Reconstruction subgrid models for nonpremixed combustion

    Get PDF
    Large-eddy simulation of combustion problems involves highly nonlinear terms that, when filtered, result in a contribution from subgrid fluctuations of scalars, Z, to the dynamics of the filtered value. This subgrid contribution requires modeling. Reconstruction models try to recover as much information as possible from the resolved field Z, based on a deconvolution procedure to obtain an intermediate field ZM. The approximate reconstruction using moments (ARM) method combines approximate reconstruction, a purely mathematical procedure, with additional physics-based information required to match specific scalar moments, in the simplest case, the Reynolds-averaged value of the subgrid variance. Here, results from the analysis of the ARM model in the case of a spatially evolving turbulent plane jet are presented. A priori and a posteriori evaluations using data from direct numerical simulation are carried out. The nonlinearities considered are representative of reacting flows: power functions, the dependence of the density on the mixture fraction (relevant for conserved scalar approaches) and the Arrhenius nonlinearity (very localized in Z space). Comparisons are made against the more popular beta probability density function (PDF) approach in the a priori analysis, trying to define ranges of validity for each approach. The results show that the ARM model is able to capture the subgrid part of the variance accurately over a wide range of filter sizes and performs well for the different nonlinearities, giving uniformly better predictions than the beta PDF for the polynomial case. In the case of the density and Arrhenius nonlinearities, the relative performance of the ARM and traditional PDF approaches depends on the size of the subgrid variance with respect to a characteristic scale of each function. Furthermore, the sources of error associated with the ARM method are considered and analytical bounds on that error are obtained

    Summary of the NOW'98 Phenomenology Working Group

    Full text link
    Summary of the Phenomenology Working Group at the Europhysics Neutrino Oscillation Workshop (NOW'98), 7-9 September 1998, Amsterdam.Comment: 66 page

    Hawking radiation as tunneling from squashed Kaluza-Klein black hole

    Full text link
    We discuss Hawking radiation from a five-dimensional squashed Kaluza-Klein black hole on the basis of the tunneling mechanism. A simple manner, which was recently suggested by Umetsu, is possible to extend the original derivation by Parikh and Wilczek to various black holes. That is, we use the two-dimensional effective metric, which is obtained by the dimensional reduction near the horizon, as the background metric. By using same manner, we derive both the desired result of the Hawking temperature and the effect of the back reaction associated with the radiation in the squashed Kaluza-Klein black hole background.Comment: 16 page

    Critical points in the Bragg glass phase of a weakly pinned crystal of Ca3_3Rh4_4Sn13_{13}

    Full text link
    New experimental data are presented on the scan rate dependence of the magnetization hysteresis width ΔM(H)\Delta M(H) (\propto critical current density Jc(H)J_c(H)) in isothermal MHM-H scans in a weakly pinned single crystal of Ca3_3Rh4_4Sn13_{13}, which displays second magnetization peak (SMP) anomaly as distinct from the peak effect (PE). We observe an interesting modulation in the field dependence of a parameter which purports to measure the dynamical annealing of the disordered bundles of vortices injected through the sample edges towards the destined equilibrium vortex state at a given HH. These data, in conjunction with the earlier observations made while studying the thermomagnetic history dependence in Jc(H)J_c(H) in the tracing of the minor hysteresis loops, imply that the partially disordered state heals towards the more ordered state between the peak field of the SMP anomaly and the onset field of the PE. The vortex phase diagram in the given crystal of Ca3_3Rh4_4Sn13_{13} has been updated in the context of the notion of the phase coexistence of the ordered and disordered regions between the onset field of the SMP anomaly and the spinodal line located just prior to the irreversibility line. A multi-critical point and a critical point in the (H,TH,T) region of the Bragg glass phase have been marked in this phase diagram and the observed behaviour is discussed in the light of recent data on multi-critical point in the vortex phase diagram in a single crystal of Nb.Comment: To appear in Current trends in Vortex State Studies - Pramana J. Physic

    Temperature dependence of the band gap shrinkage due to electron-phonon interaction in undoped n-type GaN

    Full text link
    The photoluminescence spectra of band-edge transitions in GaN is studied as a function of temperature. The parameters that describe the temperature dependence red-shift of the band-edge transition energy and the broadening of emission line are evaluated using different models. We find that the semi-empirical relation based on phonon-dispersion related spectral function leads to excellent fit to the experimental data. The exciton-phonon coupling constants are determined from the analysis of linewidth broadening

    New Exactly Solvable Model of Strongly Correlated Electrons Motivated by High T_c Superconductivity

    Get PDF
    We present a new model describing strongly correlated electrons on a general dd-dimensional lattice. It differs from the Hubbard model by interactions of nearest neighbours, and it contains the tt-JJ model as a special case. The model naturally describes local electron pairs, which can move coherently at arbitrary momentum. By using an η\eta-pairing mechanism we can construct eigenstates of the hamiltonian with off-diagonal-long-range-order (ODLRO). These might help to relate the model to high-TcT_c superconductivity. On a one-dimensional lattice, the model is exactly solvable by Bethe Ansatz.Comment: 10 pages, using latex, Phys.Rev.Lett. 68 (1992) 296
    corecore