828 research outputs found

    Design and Implementation of a Hybrid SET-CMOS Based Sequential Circuits

    Get PDF
    Single Electron Transistor is a hot cake in the present research area of VLSI design and Microelectron-ics technology. It operates through one-by-one tunneling of electrons through the channel, utilizing the Coulomb blockade Phenomenon. Due to nanoscale feature size, ultralow power dissipation, and unique Coulomb blockade oscillation characteristics it may replace Field Effect Transistor FET). SET is very much advantageous than CMOS in few points. And in few points CMOS is advantageous than SET. So it has been seen that Combination of SET and CMOS is very much effective in the nanoscale, low power VLSI circuits. This paper has given a idea to make different sequential circuits using the Hybrid SET-CMOS. The MIB model for SET and BSIM4 model for CMOS are used. The operations of the proposed circuits are verified in Tanner environment. The performances of CMOS and Hybrid SET-CMOS based circuits are compared. The hybrid SET-CMOS circuit is found to consume lesser power than the CMOS based circuit. Further it is established that hybrid SET-CMOS based circuit is much faster compared to CMOS based circuit. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2777

    Thermal Radiation from Nucleons and Mesons

    Full text link
    Thermal photon emission rates due to meson-nucleon interactions have been evaluated. An exhaustive set of reactions involving p(\bar p), n(\bar n), rho, omega, a_1, pi and eta is seen to provide a sizeable contribution to the emission rate from hot hadronic matter. Contributions from baryonic resonances are found to be negligibly small

    Renormalization group and isochronous oscillations

    Full text link
    We show how the condition of isochronicity can be studied for two dimensional systems in the renormalization group (RG) context. We find a necessary condition for the isochronicity of the Cherkas and another class of cubic systems. Our conditions are satisfied by all the cases studied recently by Bardet et al \cite{bard} and Ghose Choudhury and Guh

    Center or Limit Cycle: Renormalization Group as a Probe

    Full text link
    Based on our studies done on two-dimensional autonomous systems, forced non-autonomous systems and time-delayed systems, we propose a unified methodology - that uses renormalization group theory - for finding out existence of periodic solutions in a plethora of nonlinear dynamical systems appearing across disciplines. The technique will be shown to have a non-trivial ability of classifying the solutions into limit cycles and periodic orbits surrounding a center. Moreover, the methodology has a definite advantage over linear stability analysis in analyzing centers

    Photon interferometry and size of the hot zone in relativistic heavy ion collisions

    Full text link
    The parameters obtained from the theoretical analysis of the single photon spectra observed by the WA98 collaboration at SPS energies have been used to evaluate the two photon correlation functions. The single photon spectra and the two photon correlations at RHIC energies have also been evaluated, taking into account the effects of the possible spectral change of hadrons in a thermal bath. We find that the ratio Rside/Rout1R_{side}/R_{out} \sim 1 for SPS and Rside/Rout<1R_{side}/R_{out} <1 for RHIC energy.Comment: text changed, figures adde

    Impact of genetically modified crops on rhizosphere microorganisms and processes:A review focusing on Bt cotton

    Get PDF
    In recent years, the cultivation of genetically modified (GM) crops has become a topic of great interest, due in part to the considerable public controversy, which exists concerning their potential benefits or adverse effects. Since the development of the first GM crop about 25 years ago, a diverse range of new cultivars have been released into the environment which were developed by employing advanced molecular techniques to introduce new beneficial genes from a wide variety of sources. While GM crops have great potential for enhancing agricultural production, their potential impacts on soil biota are only partially understood and information on their long-term impact on soil biota is scant. Several recent studies have indicated that GM crops may cause changes in both the invertebrate and microorganism soil biota associated with these crops, with some laboratory-based experiments even revealing transfer of genes from GM plants to native soil bacteria. However, processes such as gene transfer and stable inheritance to subsequent generations remain unproven in natural soil systems. In addition, although significant research efforts have recently been directed towards understanding the effects of GM crops on soil biota, the wide variation in the scientific observations has often hindered an accurate understanding of the issues. Thus, this review collated and synthesized all available information on the microbiological and biochemical effects of GM crops on soil biota with a special focus on GM Bt-cotton. The review also addressed the key issues associated with the use of GM crops including herbicide resistance, transgene flow and explored the plausibility of horizontal gene transfer in soil

    Scenario of Accelerating Universe from the Phenomenological \Lambda- Models

    Full text link
    Dark matter, the major component of the matter content of the Universe, played a significant role at early stages during structure formation. But at present the Universe is dark energy dominated as well as accelerating. Here, the presence of dark energy has been established by including a time-dependent Λ\Lambda term in the Einstein's field equations. This model is compatible with the idea of an accelerating Universe so far as the value of the deceleration parameter is concerned. Possibility of a change in sign of the deceleration parameter is also discussed. The impact of considering the speed of light as variable in the field equations has also been investigated by using a well known time-dependent Λ\Lambda model.Comment: Latex, 9 pages, Major change

    Theoretical analysis of neutron scattering results for quasi-two dimensional ferromagnets

    Full text link
    A theoretical study has been carried out to analyse the available results from the inelastic neutron scattering experiment performed on a quasi-two dimensional spin-1/2 ferromagnetic material K2CuF4K_2CuF_4. Our formalism is based on a conventional semi-classical like treatment involving a model of an ideal gas of vortices/anti-vortices corresponding to an anisotropic XY Heisenberg ferromagnet on a square lattice. The results for dynamical structure functions for our model corresponding to spin-1/2, show occurrence of negative values in a large range of energy transfer even encompassing the experimental range, when convoluted with a realistic spectral window function. This result indicates failure of the conventional theoretical framework to be applicable to the experimental situation corresponding to low spin systems. A full quantum formalism seems essential for treating such systems.Comment: 16 pages, 6 figures, 1 Table Submitted for publicatio

    Radiative Decay of a Long-Lived Particle and Big-Bang Nucleosynthesis

    Full text link
    The effects of radiatively decaying, long-lived particles on big-bang nucleosynthesis (BBN) are discussed. If high-energy photons are emitted after BBN, they may change the abundances of the light elements through photodissociation processes, which may result in a significant discrepancy between the BBN theory and observation. We calculate the abundances of the light elements, including the effects of photodissociation induced by a radiatively decaying particle, but neglecting the hadronic branching ratio. Using these calculated abundances, we derive a constraint on such particles by comparing our theoretical results with observations. Taking into account the recent controversies regarding the observations of the light-element abundances, we derive constraints for various combinations of the measurements. We also discuss several models which predict such radiatively decaying particles, and we derive constraints on such models.Comment: Published version in Phys. Rev. D. Typos in figure captions correcte

    Quantum phases and dynamics of geometric phase in a quantum spin chain system under linear quench

    Full text link
    We study the quantum phases of anisotropic XY spin chain system in presence and absence of adiabatic quench. A connection between geometric phase and criticality is established from the dynamical behaviour of the geometric phase for a quench induced quantum phase transition in a quantum spin chain. We predict XX criticality associated with a sequence of non-contractible geometric phases.Comment: 9 pages, 3 figures, one reference added. arXiv admin note: significant text overlap with arXiv:0908.329
    corecore