44,744 research outputs found
Error-power tradeoffs in QCA design
In this work we present an error-power tradeoff study in a Quantum-dot Cellular Automata (QCA) circuit design. Device parameter variation to optimize performance is a very crucial step in the development of a technology. In this work we vary the maximum kink energy of a QCA circuit to perform an error-power tradeoff study in QCA design. We make use of graphical probabilistic models to estimate polarization errors and non-adiabatic energy dissipated in a clocked QCA circuit and demonstrate the tradeoff studies on the basic QCA circuits such as majority gate and inverter. We also show how this study can be used by comparing two single bit adder designs. The study will be of great use to designers and fabrication scientists to choose the most optimum size and spacing of QCA cells to fabricate QCA logic designs
PSI to turbulence during internal wave beam refraction through the upper ocean pycnocline
A numerical study based on large eddy simulation (LES) is performed to investigate the nonlinear interaction of a semidiurnal (M2) internal wave beam with an upper ocean pycnocline. During refraction through the pycnocline, the wave beam undergoes parametric subharmonic instability (PSI) with formation of waves with (1/2)M2 frequency. The three-dimensional LES enables new results that quantify the route to turbulence through PSI. The subharmonic waves generated from PSI have an order of magnitude smaller vertical scale and are susceptible to wave breaking. Convective instability initiates transition to turbulence, while shear production maintains it. Turbulence at points in the subharmonic wave paths is modulated at (1/2)M2 frequency. The beam suffers substantial degradation owing to PSI, reflected harmonics and ducted waves so that only about 30% of the incoming energy is transported by the main reflected beam.We are pleased to acknowledge
support through ONR N000140910287,
program manager Terri Paluszkiewicz,
ARC DECRA Fellowship DE140100089
for B.G., and helpful discussions with
Shaun Johnston, SIO
New magic number for neutron rich Sn isotopes
The variation of E(2+_1) of (134-140)Sn calculated with empirical SMPN
interaction has striking similarity with that of experimental E(2+_1) of
even-even (18-22)O and (42-48)Ca, showing clearly that N=84-88 spectra exhibit
the effect of gradual filling up of \nu(2f_{7/2}) orbital which finally
culminates in a new shell closure at N=90. Realistic two-body interaction CWG
does not show this feature. Spin-tensor decomposition of SMPN and CWG
interactions and variation of their components with valence neutron number
reveals that the origin of the shell closure at 140Sn lies in the three body
effects. Calculations with CWG3, which is obtained by including a simple
three-body monopole term in the CWG interaction, predict decreasing E(2+_1) for
(134-138)Sn and a shell closure at 140Sn.Comment: 4 pages, 5 figure
Closed string exchanges on in a background B-field
In an earlier work it was shown that the IR singularities arising in the
nonplanar one loop two point function of a noncommutative gauge
theory can be reproduced exactly from the massless closed string exchanges. The
noncommutative gauge theory is realised on a fractional brane localised
at the fixed point of the orbifold. In this paper we identify the
contributions from each of the closed string modes. The sum of these adds upto
the nonplanar two-point function.Comment: 27 page
Understanding Nuclei in the upper sd - shell
Nuclei in the upper- shell usually exhibit characteristics of spherical
single particle excitations. In the recent years, employment of sophisticated
techniques of gamma spectroscopy has led to observation of high spin states of
several nuclei near A 40. In a few of them multiparticle, multihole
rotational states coexist with states of single particle nature. We have
studied a few nuclei in this mass region experimentally, using various
campaigns of the Indian National Gamma Array setup. We have compared and
combined our empirical observations with the large-scale shell model results to
interpret the structure of these nuclei. Indication of population of states of
large deformation has been found in our data. This gives us an opportunity to
investigate the interplay of single particle and collective degrees of freedom
in this mass region.Comment: 8 pages, 13 figures, submitted for publication in the Proceedings of
"Frontiers in Gamma-Ray Spectroscopy 2012 (FIG12), held at New Delhi, March
5th - 7th, 2012, Organized by Inter University Accelerator Center, New Delhi,
Indi
Application of a Reynolds stress turbulence model to the compressible shear layer
Theoretically based turbulence models have had success in predicting many features of incompressible, free shear layers. However, attempts to extend these models to the high-speed, compressible shear layer have been less effective. In the present work, the compressible shear layer was studied with a second-order turbulence closure, which initially used only variable density extensions of incompressible models for the Reynolds stress transport equation and the dissipation rate transport equation. The quasi-incompressible closure was unsuccessful; the predicted effect of the convective Mach number on the shear layer growth rate was significantly smaller than that observed in experiments. Having thus confirmed that compressibility effects have to be explicitly considered, a new model for the compressible dissipation was introduced into the closure. This model is based on a low Mach number, asymptotic analysis of the Navier-Stokes equations, and on direct numerical simulation of compressible, isotropic turbulence. The use of the new model for the compressible dissipation led to good agreement of the computed growth rates with the experimental data. Both the computations and the experiments indicate a dramatic reduction in the growth rate when the convective Mach number is increased. Experimental data on the normalized maximum turbulence intensities and shear stress also show a reduction with increasing Mach number
- …
