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APPLICATION OF A REYNOLDS STRESS TURBULENCE
MODEL TO THE COMPRESSIBLE SHEAR LAYER

S. Sarkar!
Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23665

and

L. Balakrishnan
Old Dominion University
Norfolk, VA 23508

N ABSTRACT

Theoretically based turbulence models have had success in predicting many features of
incompressible, free shear layers. However, attempts to extend these models to the high-
speed, compressible shear layer have been less effective. In the present work, the compressible
shear layer was studied with a second-order turbulence closure, which initially used only vari-
able density extensions of incompressible models for the Reynolds stress transport equation
and the dissipation rate transport equation. The quasi-incompressible closure was unsuc-
cessful; the predicted effect of the convective Mach number on the shear layer growth rate
was significantly smaller than that observed in experiments. Having thus confirmed that
compressibility effects have to be explicitly considered, a new model for the compressible
dissipation was introduced into the closure. This model is based on a low Mach number,
asymptotic analysis of the Navier-Stokes equations, and on direct numerical simulations of
compressible, isotropic turbulence. The use of the new model for the compressible dissipation
led to good agreement of the computed growth rates with the experimental data. Both the
computations and the experiments indicate a dramatic reduction in the growth rate when
the convective Mach number is increased. Experimental data on the normalized maximum
turbulence intensities and shear stress also show a reduction with increasing Mach number.

The computed values are in accord with this trend.

T

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Center, Hampton, VA 23665.
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1 Introduction

d

The reduced growth rate of the high-speed, compressible shear layer relative to its low-speed
counterpart has been confirmed in several experimental studies, for example, in the recent
investigations of Papamoschou and Roshko!, and Elliott and Samimy?>. However, variable
density extensions of incompressible turbulence models, without any explicit compressibility
terms, have failed to predict the significant decrease in the spreading rate caused by an
increase in the convective Mach number. This has led to attempts by Oh3, Vandromme?,
and Dussauge and Quine®, among others, to make phenomenological modifications to in-
compressible turbulence models, in order to obtain successful predictions of the compressible
mixing layer. Recently, Sarkar et al.® and Zeman” have recognized the importance of an addi-
tional contribution to the turbulent dissipation rate, which is generated by the non-negligible
fluctuating dilatation in compressible turbulence. The additional term - the compressible dis-
sipation - has been modeled by Sarkar et al.%; this model is based on a low Mach number,
asymptotic analysis of the compressible Navier-Stokes equations and is calibrated with ref-
erence to direct numerical simulations of compressible, isotropic turbulence. The present
paper applies the model of the compressible dissipation to the high-speed shear layer within
in Fig. 1.

the framework of a second-order turbulence closure. A schematic of the shear layer is given

The paper is organized in the following manner. In Section 2 the exact governing equa-
tions are given, and the turbulence models constituting the second-order closure are de-
scribed. The numerical procedure is outlined in Section 3. The results of the calculations
tion 5.

with the second-order closure are given in Section 4, and conclusions are presented in Sec-

2 The governing equations

We obtain the equations for the mean variables by first decomposing each variable into a

mean component and a fluctuating component, and then averaging the equations for the



following variables: the density p, the velocity u; and the total energy E. The total energy
E is defined by

UiU;

2

where T denotes the static temperature, and C, is the specific heat at constant volume.

FE =

+C,T (1)

The Reynolds decomposition of an instantaneous variable ¢ into its mean and fluctuating

components is
$p=¢+¢"

where, by definition, ¢” = 0. The Favre decomposition of an instantaneous variable is also
used in compressible turbulence, primarily because the resulting structure of the averaged

inertial terms is simpler; this decomposition is given by
$=0¢+4¢
where ¢ is the density-weighted Reynolds average,

$:P

=13}

The overbar over ‘a variable is used to denote a conventional Reynolds average, while the
overtilde is used to denote the Favre average. A single superscript ' represents fluctuations
with respect to fhe Favre averége, Whlle 7ar dbuble superscript ” signiﬁesr fluctuations with
respect to the Reynoid;s"a.vrerage. The conventional Reynolds averagé of Favre fluctuations
is non-zero, in particular, ¢’ = —p"@"/p. After averaging the instantaneous Navier-Stokes
equaﬁoﬁs, thefollowﬁg mean eqﬁéiibrlx;s, are obtained: ' A

Conservation of mass:

0:(p) + (Ptik) .k = 0 (2)
Conservation of momentum:
B:(Ps) + (Puxtis) x = —Ps + Tawe — (Pufup) x (3)

‘ nl; A
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where the anisotropy tensor b;; is given by

and ¢ = u_u! = 2k denotes the trace of the Reynolds stress tensor. In (9) the model

constants are

Ci=30 , Cy=06

Since the primary aim of the paper is to study the influence of terms that arise solely from
flow compressibility, we do not use more sophisticated incompressible pressure-strain models,
such as those proposed by Shih and Lumley!!; Fu, Launder and Tselepidakis'?; and Speziale,
Sarkar and Gatski'3.
The dissipation rate tensor €;; is commonly believed to be isotropic at high turbulence
Reynolds numbers, leading to the model
2_
&j = 7Pebij (10)

where the turbulent dissipation rate € is given by

pe = Tiug, (11)

The viscous stress in a compressible fluid is

2
T = Pt + uss) — gpukeby (12)

where we have neglected the bulk viscosity. As shown in Sarkar et al.®, substitution of (12)

into (11), followed by some algebraic manipulation, gives

pe = ple, + &) (13)
where
€, = Tw)w] (14)
and
4 -7
€ = §Vd” (15)



Here w;’ is the fluctuating vorticity, and d” = up i is the fluctuating dilatation. The decom-
position (13) of the turbulent dissipation rate € into the solenoidal dissipation €, and the
compressible dissipation €. is asymptotically valid for high- Reynolds number turbulence, and
is exact for constant-viscosity homogeneous turbulence Because of the explicit compressible
contribution to the turbulent dissipation rate, the treatment of € has to be modified with
respect to the incompressible case. Developing an appropriate, direct modification of the
transport equation for € is a difficult proposition, becance t;}rlei e;ca,ct transport equation for €
is complicated for the 1ncornpress1ble case, and even more so for the compres51ble case. Also,

as discussed by Spezxale14 the addltlonroifinew terms mto the € transport equation has often
led to unintended, deleterious effects in homogeneous flow. In the present work, we adopt
a simpler alternative. The incompressible form of the dissipation equation is retained as a
transport equation for ¢,; such an rappcoech 1s valid, because ¢, is not affected by moderate
levels of compressibility®. It remains to model €.; we choose the simple, algebraic model of

Sarkar et al.b,

€. = ale,Mf (16)

which is motivated by an asymptotic analysis of the cornpressible Navier-Stokes equations
with M, as the smeﬂrprarameter. Here M, denotes the turbulent Mach number defined by
M, = +/q?/ '7R77:, and T is the Favre-averaged temperature. Finally, the model for €;; becomes

2
€ij = 556,(1 + alMtz)&-j (17)

The model constant was set as o = 1 with reference to dn‘ect numerical simulations of the
decay of isotropic, compressﬂ)le turbulence. Zeman” has also used a sumla.r decomp051t10n
of the turbulent dissipation rate, and after assuming that eddy shocklets occur in high-speed
flows, he derives a model for the contribution of these eddy shocklets to the compressible
dissipation.

In the present work, we assume that the bulk viscosity u, = 0. If the bulk viscosity pu, is

non-negligible, for example in polyatomic gases, there is an additional turbulent dissipation

o

\M

By rome e

LIRIRL T

oy [

A

e



)

term pe, = /.l.,,d”z which can be modeled as €, = aze, MZ. If the value of p, is known, a; can
be easily determined from a; by the relation o, = 3@, /47,

The pressure-dilatation p”d”, which is not necessarily single-signed (i.e; it is neither
positive semi-definite or negative semi-definite) like the compressible dissipation, is a more

156 suggests that p"d” is

difficult term to model. Low Mach number asymptotic theory
negligible compared to €., and from direct simulations® it appears that in isotropic, moderate
Mach number turbulence p"d” is appreciably smaller than €. In the present closure, we will
neglect p”d" relative to e..

The diffusive transport Tijx is modeled by a gradient transport expression,

2\2 — —
Ty = —C.p L () + () + (), (18)
where C, = 0.018. The quantity u/ is related to the turbulent mass flux p"u” by
U, = ——— 19
- (19)
and after using (6) for the mass flux, we obtain the model
—  Cuk*_
ey X (20)
pec,

The standard high-Reynolds number form of the dissipation rate equation is used as the

transport equation for e,,

Bu(pen) + (ke = ~Co i — O + (L e ) (21)
The model coefficients in (21) are
Ca=14 , Cp=19 , C.=0.15 (22)

For the present problem, we need to solve (2)-(4), along with the equation of state,
to obtain the mean variables: 5, U, V, and E. In the case of the plane shear layer, the
Reynolds stress tensor has four non-zero components: u'’, u” , v” and w” , which are solved
by the corresponding components of (8). The equation for the solenoidal dissipation rate ¢,
completes the set of governing equations. Thus a system of nine coupled, non-linear, partial
differential equations along with an appropriate set of initial and boundary conditions must

be solved.



3 Method of Solution of the Governing Equations

The transport equations for the mean ﬂow a.nd Reynolds stresses are written in the phys-
ical domain and must be transformed to the computatlonal domain using an appropriate
coordinate tra.nsformatlon For the physical problem under consideration, an algebraic grid
generation technique is used to generate the mesh. In the physical domain a uniform grid
is used in the axial direction and in the normal direction the grid lines are clustered near
regions where strong gradients exist. A uniform mesh is used in the computational domain.
The governing equations are first cast into a vector form, where U is the dependent variable
vector consisting of nine components, the rvezci:rtorrsi Fand G rerspect';vely denote the z and y
flux vectors, and H is the source vector containing the terms causing production, destruc-
tion and redistribution of the R;:ynolds stresses. To nuri'lerically obtain the solution for the
vector U, the governing equations are then transformed from the physical domain to the

computational domain, giving the following system of equations,

80 oF oG .

wteeta =1 (23)
where
v=JUu , H=JH -
ﬁ’=Fy,,——Gm,, . G Gxg—Fye y  J =Ty — Yo

In (23), a superscript () denotes quantities in the transformed system, (z¢, Z,, ¥¢, ¥n) represent

the metrics of the transforma,tion and J denotes the J acobian of the transforrnation If the

Vphysma,l gnd 1s glven the metr1cs and the Ja.cobxan of the transformation can be easily

computed.

The governing equations are integrated explicitly in time using the unsplit MacCorma.ck

predlctor corrector scheme Durmg a spec1ﬁc numerlcal sweep, the inviscid fluxes and the

first- denvatlve terms in the source vector H are backward dlfferenced in the predlctor step

and forward differenced in the corrector step. ‘Second-order central differences are used for
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the viscous and heat flux terms. Hence the complete scheme for both the predictor and

corrector steps can be expressed as follows

Predictor:
» AFl VeFii | VaGii g om
AU; ; = - — H;;
j At ( Af + A'r] I‘[,J )
U™ = Ui+ AU
Corrector
. AFT . AFT
A ntl AF;; NG sy
A Y = —At vJ 74 _ v
U;J Aé A,” HIJ
A T 1 s n A ﬂ—_ E N £
Ui = 5 (U;,,- + U+ AU, H)

The composite numerical scheme is second-order accurate in both time and space and,
being an explicit scheme, is conditionally restricted by the Courant and viscous stability
limits of the governing equations. The solution procedure requires no scalar or block tridi-
agonal inversions. The flow field is advanced from time level n to n+1 and this process is
continued until the desired integration time or steady state has been reached. Since the
Reymnolds stress transport equations contain stiff source terms, the maximum CFL number
used in the computation was limited to 0.5.

The numerical code used in this study is a two-dimensional, elliptic, Navier-Stokes solver
(SPARK2D) written in a generalized body-oriented coordinate system. As such, various
two-dimensional free shear flows and wall bounded flows can be handled by the numerical
code. The code in its original form used a second-order spatially and temporally accurate,
two-step MacCormack scheme. The latter versions of the code employ a variety of higher-
order compact algorithms?” (4th and 6th order) and various upwind schemes. Local time
stepping and residual smoothing options are also available in the code to accelerate the
convergence to steady state. Both laminar reacting and non-reacting flows can be easily
handled by the code. In the present research work, the capabilities of SPARK2D are further

enhanced by adding a second-order Reynolds stress model as a turbulence closure.



Since the governing equations are elliptic in nature, the boundary conditions have to be
specified along all four boundaries. These include inflow, outflow and outer boundaries (lower
and upper boundaries): respectively. At the iﬁﬁé&'Béu'riaé:fy”(x:0.0), profiles are specified
for the velocities, static pressure, static temperature, turbulent stresses and the turbulent
dissipation rate. Since we are interested in the downstream fully-developed regime, the
specific form of the inlet profiles is not crucial.

The outer boundaries always remain in the free-stream and the appropriate boundary
condition is to assume that the normal derivative of the flow variables vanish along those
boundaries. The gradient boundary conditions, not only preserve the free-stream values
along the outer boundaries but also provide nonreflective conditions for the outgoing waves.
The outflow boundary (z = Zna.) is always supersonic, and hence the values of mean flow and
turbulence quantiﬁes are determined by zeroth-order extrapolation from upstream values.
Along with the boundary conditions, the governing equations also require a set of initial
conditions. The initial conditions at timé 17:7=0 fof all the variables are obtained by simply
propagating the inflow profiles throughout the computational domain. Having specified all
the boundary and initial data the equations are marched in time until the residual based
on pU decreases by six orders of magnitude, indicating that a converged solution has been

obtained.

4 Results

It is known that the fully-developed, high-Reynolds number shear layer spreads linearly, and
that the growth rate d§/dz satisfies the relation

dé U, —-U;
- = —_— 24
== O g7 (24)
where §(z) denotes the width of the shear layer, and Cs is approximately constant. The
shear layer thickness §(z) has been defined in several ways by previous investigators; in the

present work, §(z) represents the distance between the two cross-stream positions where the

normalized streamwise velocity U* = (U — U,)/(Uy — U,) is respectively 0.1 and 0.9. The
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fully-developed nature of the shear layer is also characterized by the maximum values of the

normalized turbulent stresses oy, 0y, 0y and oy, reaching constants; where

ou = Vb (U - Us)
oy = VR (U - T)
Ow = ﬁ/(Ul—Uz)
Cw = V@ (U~ V)

Figs. 2-6 show results for a particular set of conditions for the shear layer between two
streams of air. The high-speed stream had a velocity Uy = 2500 m/s while the low-speed
streamn had a velocity U, = 800 m/s. The thermodynamic quantities in the two incident
streams were equal and were prescribed as T} = 800 K, p; = 1 atm, and p; = 0.44 kg/m3.
When the ratio of specific heats v has the same value in the two streams, the convective

Mach number M, is given by’,
M. = U, - U,

a1 + az
where a; and a; are the respective speeds of sound in the two layers. The case described by
Figs. 2-6 corresponds to M. = 1.5. The computational domain for this case was a rectangle
of dimensions 0.1 m x 0.05m with a 201 x 51 grid overlaying it. The grid spacing was umform
in the streamwise direction and stretched in the cross-stream direction. Based on comparison
with results using other grid spacings, the resolution of the 20151 grid for the computational
domain was found to be sufficient to provide practically grid-independent results for the mean
velocity and turbulent stress profiles. As an example of the grid sensitivity of the calculated
solution, increasing the number of grid points by a factor of approximately 1.7 changed the
values of Cj, and the maximum values of oy, 0y, 0y and Gy by less than 2% from the values
corresponding to the 201 x 51 grid. ‘

Fig. 2 shows that the shear layer thickness 5(z) increases linearly after an initial develop-
ment phase. In Fig. 3 the normalized streamwise mean velocity U* at the inlet, outlet and

two intermediate locations is plotted as a function of the similarity variable 7 = (y —ve)/6,

where y is the local cross-stream coordinate and y. is the cross-stream coordinate where

11



U* = 0.5. It is evident from Figs. 2 and 3 that, at the outflow boundary of the computa-
tional box, the linearly growing regime is well-established and the mean velocity has reached
its self-similar profile. The similarity mean velocity profile of Fig. 3 is somewhat asymmetric
with respect to its center 7 = 0 and indicates a greater penetration into the low-speed side
than the corresponding penetration into the upper, high-speed side of the domain. Fig. 4
shows the mean temperature profile across the shear layer. There is a sharp increase of the
temperature in the core of the shear layer due to the large velocity gradients there. Figs. 5
and 6 show profiles of the normalized streamwise turbulence intensity o, and the normalized
shear stresé Ouy. All the componénfé of the normalized Réynolds stress tensor reach their
self-similar profiles at the exit of the computational box. 7

The growth rate parameter Cs and the maximum values of the normalized Reynolds
stresses o, 0y, 0y, and oy, are nominally constant for the incompressible shear layer. How-
ever, it is clear from the experimental data of Figs. 7 and 8 that these quantities show a
systematic decrease when the convective Mach number M, increases. In Fig. 7, the incom-
pressible value (Cs)o, which was obtained by calcﬁlating a case with a small M., was used
to normalize the growth rate parameter Cs. Fig. 7 indicates that the Reynolds stress calcu-
lations without the compressibility model (16) show only a modest decrease in the growth
rate parameter. However, introduction of the model for the compressible dissipation leads
to good agreement with both the experimentally obser'friea;tfénds of the sharp decrease in
the growth rate, and the later flattening of the growth rate curve in the high Mach num-
ber range. It is evident from Flg 8 that computaﬁéhs with the compressible dissipation
model are in qualitative agreement w,irtrh the observed‘ trend of a decrease in the maximum
normalizea Iiéjrnc;lds stress cornpénents with an increase in M..
" "Growth rate curves for various values of &1 are shown Tinwcrzal;jﬁ'nction with the Langley
experimental curve'® in Fig. 9. Increasing o, from its recommended value of 1.0 leads to a
sharper reduction of the growth rate before the eventual flattening out at high convective

Mach numbers. The flattening of the growth rate curve for high M, is due to the maximum
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turbulent Mach number M, asymptoting to an equilibrium level (as shown in Fig. 10), and
consequent leveling out of the compressible contribution to the turbulent dissipation rate.
The model of Sarkar et al.® for the compressible dissipation, which was used in the
present work, has also been applied by Wilcox!® to some supersonic and hypersonic flows
within the framework of a k¥ — w turbulence closure. Wilcox’s study concludes that the
addition of this model of the compressible dissipation leads to the experimentally observed
reduction in the growth rate of the compressible shear layer, leads to values of skin friction in
adiabatic boundary layers that are somewhat lower than the measured values, and results in
an improved prediction of the separation bubble size in a shock-boundary layer interaction

problem.

5 Conclusions

Initially, a second-order turbulence closure without any explicit compressibility models was

18,2021 1o

applied to the high-speed shear layer. The results confirmed earlier conclusions
garding the inability of such variable density generalizations of incompressible models to
predict the strong influence of the convective Mach number on the growth rate of the shear
layer. The new model of Sarkar et al.® for the compressible dissipation was then incorpo-
rated into a full Reynolds stress closure. The growth rates computed with this model, not
only captured the experimentally observed sharp reduction of the growth rate at interme-
diate Mach numbers, but also showed the tendency to flatten out at large Mach numbers.
The present calculations are also in agreement with the experimental result that the maxi-
mum normalized turbulence intensities and shear stress decrease when the convective Mach
number is increased.

In the future, we propose to apply the present second-order closure to more complex

compressible flows. Though, the consequences of the enhanced dissipation in compressible

flows are consistent with some of the distinguishing features of the high-speed shear layer,

13



other compressibility phenomena may become important in different flows like the shock-
boundary layer interaction. Our future studies will address issues relevant to the modeling

of such distinct mechanisms.
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Figure 1. Schematic of the compressible shear layer.
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Figure 2. Downstream evolution of the shear layer thickness.
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Figure 3. Transverse mean velocity profiles at various streamwise locations.
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Figure 4. Transverse mean temperature profiles at various streamwise locations.
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23



ORIGINAL PAGE |
S
OF POOR QUALITY

—  With Compressible Dissipation Model
Without Compressible Dissipation Model
&  Papamoschou and Roshko'
06 —0- "lLangley Experimental Curve''8
/72 ' x Elliott and Samimy?
O L «  Petrie, Samimy and Addy??
< o Ikawa and Kubota??
© 24
O o4l x  Wagner
A
A%
0.2 A
OO ] i 1 | S
0 1 2 3 4 5
MC

Figure 7. Variation of the growth rate of the compressible shear layer with the convective

Mach number.

24

LU



ORIGINAL PAGE s
OF POOR QUALITY

0.25 — computed o,
——— computed o,
. computed o,

O experimental o,

0 0.20T ¢ experimental o,
o + experimental o,
0

C 015

=4

%

%)

3

S 0.10

-

>

©

QZ

0.05 |

OOO | | 1 | J

Figure 8. Variation of the maximum Reynolds stresses with the convective Mach number.

25



1.09¢
\.
0.8 .
/\00‘6_ \ - oy = 1.0
Q(O \\ —O- '"Langley Experimental Curve”
S—r \
\ \
© \
© 0.4}
0.2 I S SRR
OO 1 | | | J
0 1 2 3 4 5
MC

Figure 9. Computed growth rate curves for various values of the parameter a; in the

model for compressible dissipation.

26

[ N ]



0.4}
0.3
E—&—J

0.2

0.1F

OO | ] | | 1
0 1 2 3 4 o)

MC

Figure 10. The dependence of the maximum computed value of the turbulent Mach num-

ber M; on the convective Mach number M..

27






NASA Report Documentation Page

NIOND 4erNAUICs ana
SeACe AT INON

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA CR-182002
ICASE Report No. 90-18

4. Title and Subtitle 5. Report Date

APPLICATION OF A REYNOLDS STRESS TURBULENCE February 1930

MODEL TO THE COMPRESSIBLE SHEAR LAYER S Feriomming Graamaaton Code

7. Authorls) 8. Performing Organization Report No.
S. Sarkar 90-18
L. Balakrishnan 10. Work Unit No.

505-90~21-01
9. Performing Organization Name and Address

Institute for Computer Applications in Science 1T Contract or Grant No.
and Engineering

Mail Stop 132C, NASA Langley Research Center NAS1-18605

Hampton, VA 23665-3225 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration Contractor Report

Langley Research Center 14. Sponsoring Agency Code

Hampton, VA 23665-5225

15. Supplementary Notes

Langley Technical Monitor: Submitted to AIAA Journal

Richard W. Barnwell

Final Report

16. Abstract Theoretically based turbulence models have had success in predicting many features of
incompressible, free shear layers. However, attempts to extend these models to the high-
speed, compressible shear layer have been less effective. In the present work, the compressible

shear layer was studied with a second-order turbulence closure, which initially used only vari-
able density extensions of incompressible models for the Reynolds stress transport equation
and the dimsipation rate transport equation. The quasi-incompressible closure was unsuc-
cessful; the predicted effect of the convective Mach number on the shear layer growth rate
was significantly smaller than that observed in experiments. Having thus confirmed that
compressibility effects have to be explicitly considered, a new model for the compressible
dissipation was introduced into the closure. This model is based on a low Mach number,
asymptotic analysis of the Navier-Stokes equations, and on direct numerical simulations of
compressible, isotropic turbulence. The use of the new model for the compressible dissipation
led to good agreement of the computed growth rates with the experimental data. Both the
computations and the experiments indicate a dramatic reduction in the growth rate when
the convective Mach number is increased. Experimental data on the normalized maximum
turbulence intensities and shear stress also show a reduction with increasing Mach aumber.
The computed values are in accord with this trend.

17. Key Words (Suggested by Author(s)} 18. Distribution Statement
turbulence modelings, compressible flows 34 - Fluid Mechanics and Heat Trans-
fer

Unclassified - Unlimited

19. Security Classif. {of this report) 1 20. Security Classif. (of this page) 21. No. of pages 22. Price
Unclassified Unclassified 29 AO03

NASA TORM 626 10T 6
NASA-Langley, 1990



3




