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Abstract A numerical study based on large eddy simulation (LES) is performed to investigate the
nonlinear interaction of a semidiurnal (M2) internal wave beam with an upper ocean pycnocline. During
refraction through the pycnocline, the wave beam undergoes parametric subharmonic instability (PSI) with
formation of waves with (1/2)M2 frequency. The three-dimensional LES enables new results that quantify
the route to turbulence through PSI. The subharmonic waves generated from PSI have an order of
magnitude smaller vertical scale and are susceptible to wave breaking. Convective instability initiates
transition to turbulence, while shear production maintains it. Turbulence at points in the subharmonic wave
paths is modulated at (1/2)M2 frequency. The beam suffers substantial degradation owing to PSI, reflected
harmonics and ducted waves so that only about 30% of the incoming energy is transported by the main
reflected beam.

1. Introduction

Internal waves generated by the surface tide flowing over rough topography propagate into the ocean
interior where they may break down into turbulence, thus playing a key role in ocean mixing [Munk
and Wunsch, 1998; St. Laurent and Garrett, 2002]. Generation at critical or supercritical sites leads to
the formation of propagating internal wave (IW) beams. Observational studies [Martin et al., 2006; Cole
et al., 2009; Holbrook et al., 2009; Johnston et al., 2011] show that IW beams form and then degrade upon
interaction with a pycnocline but the mechanisms underlying the degradation are not well understood.

A single internal wave of frequency 𝜔0 and wave vector k0 is subject to the parametric subharmonic
instability (PSI) under certain circumstances whereby the primary wave decays by transferring energy
into two waves of lower frequency, such that k0 =k1 +k2 and 𝜔0 =𝜔1 +𝜔2 are satisfied. In previous work
[Gayen and Sarkar, 2013], we showed using 2-D simulations that PSI can occur when an incident IW
beam refracts through the nonuniform stratification of the upper-ocean pycnocline. In that parametric
study, it was found that incoming waves suffered PSI as long as the wave amplitude was sufficiently
large for nonlinear behavior and the pycnocline was sufficiently thick to accommodate 1–2 wavelengths
of the subharmonic waves. However, owing to the two-dimensional approximation, we could not
address the important question of turbulence and mixing that is potentially present during the IW beam
refraction. Here we perform high-resolution, three-dimensional LES that charts the route to turbulence from
PSI and adds another degree of realism to numerical modeling of the internal wave dynamics.

Direct transfer through PSI has been observed; e.g., from semidiurnal to diurnal motions in the vicinity
of Kaena Ridge [Carter and Gregg, 2006; Sun and Pinkel, 2013], and from the internal tide to near-inertial
motions near 29◦N [MacKinnon et al., 2013]. Downward propagating IW beams, after generation at a
continental shelf break, have been found to suffer PSI in two-dimensional simulations by Gerkema et al.
[2006]. In a laboratory experiment [Clark and Sutherland, 2010], large-amplitude oscillation of a cylinder
led to IW beams that became unstable to PSI. There is a large body of literature on PSI, e.g., as discussed
in recent contributions [Bourget et al., 2013; Gayen and Sarkar, 2013]. It has been hypothesized that PSI is
effective as a route to turbulence from oceanic internal waves. However, demonstration that internal waves
cascade to three-dimensional turbulence through PSI has proved elusive in measurements and numerical
simulations because of the broad range of spatiotemporal scales. This motivates the present work.
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Table 1. Simulation Parameters

Physical Parameters

Vertical thickness of IW beam lb (m) 100

Vertical thickness of pycnocline lpy (m) 50

Relative thickness of IW beam lb∕lpy 2

Velocity of IW beam u0 (cm/s) 0.41

Frequency of IW beam Ω (s−1) 1.4 × 10−4

Deep stratification N1 (s−1) 1.15 × 10−3

Pycnocline inhomogeneity Γ = N2∕N1 4

Incoming IW angle 𝜃 (◦) 7

Molecular viscosity 𝜈 (m2/s) 10−6

Prandtl number Pr = 𝜈∕𝜅 7

Froude number Fr = u0∕(N1lb) 0.035

Reynolds number Re = ublb∕𝜈 4.1 × 105

2. Problem Setup

Large-eddy simulation (LES) is used
to obtain the filtered velocity and
density fields by numerical solution
of the Navier-Stokes equations under
the Boussinesq approximation,
written in Cartesian coordinates
[x, y, z] in dimensional form as follows:

𝛁 ⋅ u = 0
Du
Dt

= − 1
𝜌0

∇p∗ + 𝜈∇2u − 𝛁 ⋅ 𝝉

D𝜌∗

Dt
= 𝜅∇2𝜌∗ − w

d𝜌b

dz
− 𝛁 ⋅ 𝝀 (1)

Here p∗ and 𝜌∗ denote deviation
from the background pressure (pb)

and density (𝜌b), respectively. The total density, denoted by 𝜌, is equal to 𝜌∗ + 𝜌b. The present problem is
motivated by internal waves measured at Kaena Ridge, south of the critical latitude of 29◦N for the M2
internal tide, so that the subharmonic M2/2 in the observations [Carter and Gregg, 2006; Sun and Pinkel,
2013] has sufficient separation from the inertial frequency. Coriolis effects are not dominant on internal
wave stability at such low latitudes, and therefore, rotation is not included in the model for simplicity.

The quantity 𝝉 that denotes the subgrid-scale stress tensor and 𝝀 that is the subgrid density flux are
modeled as described by Gayen et al. [2010]. Briefly, 𝝉 is represented with a dynamic eddy viscosity model
and 𝝀 with a dynamic eddy diffusivity model. Each subgrid model has a corresponding Smagorinsky
coefficient that is evaluated through a dynamic procedure. Spanwise derivatives are treated with a
pseudo-spectral method, and the wall normal spatial derivatives are computed with second-order finite
differences. A third-order Runge-Kutta method is used for time stepping, and viscous terms are treated
implicitly with the Crank-Nicolson method. The test domain, excluding the sponge region, consists of a
rectangular box of 3000 m length, 300 m height, and 60 m width with a 2300 × 128 × 500 grid, having x and
z stretching. The grid spacing (Δxmin = 0.5 m, Δxmax = 1.5 m, Δzmin = 0.25 m, Δzmax = 1 m, Δy = 0.5 m)
is sufficient to resolve smaller waves generated during the subharmonic instability. Grid spacing is
determined to be sufficient for LES by examining the spanwise spatial spectra and temporal spectra.
Variable time stepping with a fixed Courant-Friedrichs-Lewy number of 1.2 is used which gives time step,
Δt ≃ 1 s. The present simulation takes approximately 16,000 CPU hours to simulate one tidal cycle, and we
simulate 32 cycles which include the initial 6 cycles for arrival of the mean beam into the pycnocline, the
following 14 cycles for the formation of subharmonics, higher harmonics, and transition to turbulence, and
the final 10 cycles for turbulence to reach a quasi steady state.

The present configuration is similar to Gayen and Sarkar [2013], where the IW beam is forced at the
left-hand side of the computational domain using the analytical value of the parallel and transverse velocity
components, as well as the buoyancy fields of the Thomas-Stevenson profiles [Thomas and Stevenson, 1972;
Mercier et al., 2010]. At the top of the domain, a free surface condition with the rigid-lid approximation is
imposed with zero gradient value for the density. The right and bottom boundaries are artificial boundaries
corresponding to the truncation of the domain. Rayleigh damping or a sponge layer is used at the right and
the bottom of computational domain so as to minimize spurious reflections from the artificial boundary into
the test section of the computational domain. The sponge region at the right boundary contains 25 points
and extends from 3000 m to 3500 m, while the bottom sponge with 15 points extends from z = −180 m to
−250 m. The strength of the sponge region was adjusted until reflection from the IW beams incident on the
sponge was found to be negligible.

The parameters correspond to case A5 of Gayen and Sarkar [2013] and are summarized in Table 1. Under the
conditions of the background stratification chosen here, the IW beam is stable during propagation until it
encounters variable stratification (upper ocean pycnocline).
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Figure 1. (a) A vertical x-z snapshot of the streamwise velocity, u(x, z) m/s, at t = 30 T . The beam path is denoted by
the white line. The snapshot shows a portion of the computational x-z domain. (b) Profiles of the background density
difference, 𝜌b(z), kg/m3 with respect to a reference density and buoyancy frequency, N(z) s−1, where N1 and N2 are the
buoyancy frequency in the lower part of the domain and at the pycnocline center, respectively. (c) Contour of turbulent
kinetic energy (m2∕s2) at t = 30 T . The boxed region is used for area integration of terms in TKE budget. Turbulence data
at the vertical green line will be discussed later in Figure 4. (d) Line-averaged power spectrum ⟨Y⟩(𝜔), normalized by its
value at the M2 frequency, of streamwise beam velocity measured inside the pycnocline. The time series is taken over
a time interval of 20 T and at the green horizontal line in Figure 1a at location z = 60 m extending from x = 500 m to
x = 2000 m.

3. Results
3.1. Transition to Turbulence
An upward and rightward traveling IW beam encounters the upper ocean pycnocline at x ∼ 1000 m and
z ∼ 50 m and refracts through the pycnocline as shown in Figure 1a. The IW beam narrows (vertical wave
number increases) during transmission through the lower transition layer, N1 → N2, where N2 is larger than
N1. The beam also refracts rightward and finally reflects from a caustic (IW frequency equal to buoyancy
frequency) at z ∼ 85 m. It returns back to the deep ocean after traveling through the transmission layer. The
IW beam behaves linearly prior to t ∼ 15 T . Later, harmonics of the fundamental and resonant subharmonics
form [Gayen and Sarkar, 2013].

After time t ∼ 15 T , during refraction through the pycnocline, the incoming IW beam becomes nonlinear
and susceptible to PSI. Figure 1d shows the temporal spectrum of the velocity signal measured at the
green horizontal line in Figure 1a that encompasses the refracted and reflected wave regions. The temporal
spectrum is obtained by an x average of the time-to-frequency transform of u(x, t) at points on the green
horizontal line. There is clear evidence of the energy peak at 𝜔 ∼ 0.5Ω in addition to the primary peak at
the wave forcing frequency, Ω. Harmonics of M2 including a strong spectral peak at M4 and interharmonics
are associated with the reflected wave signal and not the refracted incident wave. The signature of PSI is also
evident in physical space. One of the two participating subharmonic waves has horizontal wave number
with sign opposite to that of the primary wave resulting in spontaneous generation of leftward moving
waves which are spotted inside the pycnocline and at the left side of the main IW beam. A detailed
discussion of the characteristics of these subharmonic waves and their growth rate is given by Gayen and
Sarkar [2013]. Briefly, the spectrum shows a subharmonic peak at 𝜔 ≃ 0.5𝜔0 associated with a pair of
oppositely traveling daughter waves. The incident 7◦ IW beam refracts through the pycnocline, attains a
shallower angle of approximately 2.4◦, and subsequently suffers PSI. The analysis of Bourget et al. [2013]
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Figure 2. (a) Density gradient, 𝜕𝜌∕𝜕z(x, z) kg/m4, at a small section of the IW beam inside the pycnocline at t = 14 T ,
before the subharmonic instability. (b) Profiles correspond to the streamwise velocity, u(z) m/s, density, 𝜌(z) kg/m3, and
inverse gradient Richardson number, (Rig)−1(z) along the vertical black line marked in Figure 2a at same time instant.
Similarly, profiles in Figure 2d correspond to the vertical black line in Figure 2c. (c and d) Analogs of Figures 2a and 2b at
a later time t = 18 T , after PSI is established. The black contour in Figure 2c shows a region with positive density gradient
and negative Ri−1

g .

shows that PSI results in a pair of subharmonic peaks that asymptotically merge, i.e., 𝜔1,2 → 0.5𝜔0 as the
wave Reynolds number, Re → ∞. For the present finite (but large) Re, spectral peaks are at 𝜔1 ≃ 0.53𝜔0 and
𝜔2 ≃ 0.47𝜔0 and where 𝜔0 is the fundamental M2 frequency, Ω. Analysis of the space-time data obtained
after band passing at 𝜔0, 𝜔1 and 𝜔2 gives the phase velocities and thus the wave numbers. We find that the
wave numbers form a triad: the fundamental has kx,0 ≃ 0.012 m−1, kz,0 ≃ −0.29 m−1, while the secondary
waves have kx,1 ≃ 0.065 m−1, kz,1 ≃ −3.03 m−1, and kx,2 ≃ −0.055 m−1, kz,2 ≃ 2.77 m−1, respectively. Because
of their small vertical wavelength (≃ 2 m), an order of magnitude smaller than the parent refracted wave,
the daughter waves potentially drive further instability by significantly decreasing the density gradient and
increasing velocity shear as will be demonstrated. Figure 1c shows the spatial distribution of turbulence by
plotting the turbulent kinetic energy (TKE) denoted by K = 1∕2⟨u′

i u′
i ⟩, where u′

i = ui −⟨ui⟩. Mean (bracketed)
values are evaluated by spanwise (y) averaging, and fluctuations (primes) are deviations from the mean.

Figure 2a shows the vertical gradient of the density at t = 14 T before PSI. The internal wave is linear
and the beam exhibits stable values of gradient Richardson number (Rig = N2∕S2, where N and S are the
local values of mean buoyancy frequency and mean shear, respectively) across the IW beam as shown in
Figure 2b. During PSI, the profiles of the velocity and density show presence of small scales with a local
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Figure 3. Vertical y-z slices of the density, 𝜌(y, z) kg/m3, field at x = 1320 m during the PSI event. (a) Density inversion at
t = 18.1 T and (b) mean density profile at that time. (c) Mushroom structures that form at t = 18.11 T , immediately after
the density inversion, and (d) the corresponding mean density profile.

increase of S and decrease of N that combine to increase Ri−1
g . Ultimately, thin convectively unstable regions

with 𝜕𝜌∕𝜕z > 0 and Ri−1
g < 0 form in the subharmonics as shown in Figures 2c and 2d.

The first density inversion (Figure 3a) is noticed inside the pycnocline at a location x = 1320 m, extending
over the region 57 < z < 59 m, which is comparable in thickness to the wavelength of PSI-generated
waves. Soon after, a mushroom-shaped plume (Figure 3b) forms, suggesting convective rather than shear
instability. Several turbulent patches are subsequently initiated at the beam in the pycnocline, similarly by
convective instability.

3.2. Internal Wave Energetics
The partition of the main incoming IW beam energy (beam,in = 100%) into its component waves during the
interaction with the pycnocline is quantified by computing the wave flux (pressure-velocity correlation). The
leftward flux is computed at the vertical line between (x, z) locations of (500 m, 20 m) and (500 m, 150 m),
the rightward flux at a vertical line between (3000 m, 20 m) and (3000 m, 150 m), and the bottom flux at a
horizontal line at z = 0 that extends between x = 1100 m and 3000 m. We also utilize the fact that the
component waves have different propagation angles and intersect the boundaries at different, known
locations. The wave flux associated with leftward going subharmonics is sub,left ≈ 10%, the main reflected
IW beam carries beam,out ≈ 31%, the rightward, horizontal flux ducting through the pycnocline via solitary
waves and trapped subharmonics is pyc,right ≈ 15%, and bottom ≈ 35% is associated with waves that escape
from the bottom boundary in the form of higher harmonics, subharmonics, and the immediate reflection
of IW beam upon encountering the lower boundary of the pycnocline. Since the leftward subharmonic
carries 10% energy, and assuming that, the rightward subharmonic also carries approximately 10% gives a
net 20% energy loss through PSI.

3.3. Turbulence
We now turn to the temporal evolution of turbulence statistics by illustrating the behavior at the vertical
green line at x = 1500 m in Figure 1c.

Figure 4a shows the evolution of density at different elevations starting from z = 54 m to z = 65.5 m. The
circles in Figure 4a show instances where the density traces at different heights become tangent or even
cross, indicating convective instability. These instances of near-zero density difference at a fixed location
occur every two cycles. For example, the near-zero density difference at density 𝜌 ≈ 0.035 kg/m3

corresponding to location z ∼ 55 m occurs at t = 322 h and t = 346 h with interval close to 24.8 h,
which is twice the M2 time period. The wavefield modulates the background density so that N2 at any given
spatial location achieves a local minimum when the perturbation density gradient (𝜕𝜌′∕𝜕z) attains its
positive maximum, an event that occurs once a cycle, i.e., at time interval of T = 12.4 h. Indeed, at the
location z ∼ 55 m, local minima in N2 can be seen at period T but the occurrence of near-zero N2 (convective
instability) at that location occurs at period 2 T , corresponding to the subharmonic and not the primary
wave period. It is the subharmonic wave with M2/2 frequency whose perturbation density gradient is
sufficiently large to cause convective instability.

The phasing of the convective instability relative to the baroclinic velocity is also of interest. The streamwise
velocity over the same region is plotted in Figure 4b. The circled regions in Figure 4a occur when the flow
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Figure 4. (a) Time evolution of density, 𝜌 (kg/m3), at different heights, with the bottom line (highest density)
corresponding to the smallest elevation, z = 54 m, and the top one to z = 65.5 m. Circles locate events of reduced
(near-zero) density gradient. (b) Temporal evolution of mean streamwise velocity (m/s) and isopycnals (black lines).
(c) Temporal evolution of TKE (m2/s2) profile. (d) Temporal evolution of TKE at locations z = 55 m, z = 57 m, and TKE
averaged over a vertical line. Data taken at x = 1500 m, green vertical line in Figure 1c.

velocity reverses from negative to positive through the zero velocity point. This is due to the fact that, in a
linear wave, the density lags the vertical velocity by 𝜋∕2 and, since the vertical and horizontal fluid velocity
have the same sign in the present problem, it also lags the horizontal velocity by 𝜋∕2.

Due to the combined effect of density and velocity, the turbulent kinetic energy (TKE) shows significant
vertical variability over the tidal cycle. Inside the pycnocline, patches of enhanced TKE are observed along
the subharmonic wave paths and approximately separated by their vertical wave length, which is also clear
from the overall spatial view of the TKE in Figure 1c. Figure 4c shows multiple TKE patches, e.g., at locations
z∼55, 60, and 65 m, that occur at the same z − t locations as the near-zero density gradients that were
seen in Figure 4a. These TKE patches repeat at the temporal period of the M2/2 frequency subharmonic.
Patches of TKE at locations z∼62.5 and z∼57 m, associated with breaking of different PSI waves, are offset
in time with respect to the three previously described TKE patches and also repeat with the M2∕2 subhar-
monic frequency. The evolution of TKE at fixed points and the TKE averaged over a vertical line are shown
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Figure 5. (a) Cycle evolution of area-integrated values of the quantities, normalized by the incoming wave flux, in TKE
budget along with integrated scalar dissipation. Area of integration is chosen to capture the entire region of turbulence
and is marked by the green rectangle in Figure 1c. The M2 period of the area-integrated production and dissipation rate
are shown with cyan and orange lines, respectively. (b) The budget of integrated TKE over two M2 cycles.

in Figure 4d. At a given location, the maximum of TKE repeats at M2/2 temporal frequency, for instance,
TKE at x=55 m exhibits peaks at t=323 h and t=348 h while there are auxiliary local maxima at t=326 h
and t = 361 h. On the other hand, the line-averaged TKE shows M2 temporal frequency since peaks in the
temporal evolution at different spatial locations on the vertical line occur with a temporal offset, e.g., TKE
peaks at z = 55 m are temporally offset with respect to z = 57 m in Figure 4d.

Figure 5a shows the temporal evolution of integrated values of terms in the TKE budget. The integration is
over the rectangular box in Figure 1c. Here each turbulent quantity is normalized by the input internal wave
flux ∫ pux=0 dz. The spatially integrated turbulence becomes nonnegligible at t ∼ 256 h. Although each
turbulent event is initiated by convective instability, it is shear production that maintains TKE. Unlike the
half-M2 temporal frequency of peak TKE at a given z location, the integrated shear production, ∫ ⟨P⟩dV
peaks with M2 temporal frequency. This difference between M2/2 frequency of local and M2 frequency of
spatially integrated statistics occurs because spatial integration captures turbulence from the breaking of
PSI waves at multiple locations along the IW beam. Integrated turbulent dissipation, ∫ ⟨𝜀⟩dV , also shows
modulation at M2 frequency. Interestingly, turbulence in the pycnocline (quantified by turbulent dissipation
rate here and by line-averaged TKE in Figure 4d) is present through the tidal cycle, albeit with M2 modula-
tion. Both ∫ ⟨P⟩dV and ∫ ⟨𝜀⟩dV are (10)% of the total input wave flux. Figure 5b shows the dominance of
shear production in the TKE budget. Patches of positive buoyancy flux, essential for transition to turbulence,
are locally present but adjacent negative values lead to a small spatially integrated value.

Dissipation of the turbulent potential energy ⟨𝜀𝜌⟩ has been calculated, and the spatially integrated
value is shown as a function of time along with TKE production and dissipation in Figure 5. Here
𝜖𝜌=1∕2N2𝜒∕ (d𝜌b∕dz)2, and the scalar dissipation is 𝜒=2𝜅⟨𝜕𝜌′∕𝜕xk𝜕𝜌

′∕𝜕xk⟩. Variation over the tidal cycle of
∫ ⟨𝜀𝜌⟩dV is not systematic. Scalar mixing in the present problem can be characterized in terms of a turbulent
mixing efficiency defined as ∫ ⟨𝜀𝜌⟩dV∕ ∫ ⟨𝜀⟩dV . The mixing efficiency, thus defined, is found to be 𝜂 ∼ 30%.
The turbulent eddy diffusivity 𝜅𝜌 = |⟨w′𝜌′⟩∕d⟨𝜌⟩∕dz| has also been calculated. The value of 𝜅𝜌 is enhanced
to (103) relative to the molecular value.
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4. Conclusions

We perform high-resolution, three-dimensional LES to demonstrate that oceanic high-mode internal waves
are susceptible to nonlinear breakdown through PSI and eventually to small scale turbulence when they
refract through the variable stratification of a pycnocline. Coriolis effects are not included in the model
which is thus limited to examination of wave instability at low latitudes, equatorward relative to the
critical latitude (29◦N) for M2 internal tide propagation. Refraction decreases the vertical length scale of
the incident IW beam, PSI of the refracted wave generates subharmonics with a further order of magnitude
reduction of vertical scale, and finally, wave steepening develops into three-dimensional turbulence via
convective instability. Although turbulence at a given location is initiated through convective instability,
it is maintained mainly by shear production and is continuously drained through viscous dissipation.
Elevated turbulence is observed predominantly along the subharmonic wave paths in the pycnocline with
temporal frequency half of the M2 tidal frequency at any fixed location inside these wave paths. Line and
volume-averaged turbulence statistics show contributions from different breaking regions leading to
temporal modulation at M2 frequency. The eddy diffusivity is enhanced to as large as 500 times the
molecular value and the mixing efficiency is 𝜂 ∼ 30%.

The present work examines transition to turbulence and turbulence properties in a quasi-steady
regime through a computationally expensive three-dimensional simulation conducted over a long time
(30 periods). Here an internal wave beam with Froude number, Fr = 0.035, and vertical thickness,
lb = 100 m, propagates at 7◦ into a pycnocline of thickness, lpy= 50 m. In our previous parametric study
[Gayen and Sarkar, 2013], we demonstrated that PSI occurred as long as the pycnocline was not too thin
(lpy∕lb > 0.1 so that the vertical extent of the pycnocline can support 1–2 wavelengths of the M2/2
subharmonic) and the wave amplitude is not too small (Fr exceeds approximately 0.015). All of the cases
exhibiting PSI also show breakdown to turbulence but, owing to the computational expense, we defer
parametric examination of the turbulence characteristics with additional high-resolution, long-time
simulations to a future paper.

There is substantial degradation of the internal wave beam when it interacts with the pycnocline with
only about 30% of the incoming wave energy carried by the main reflected beam. The present results may
thus help explain previous observations [Martin et al., 2006; Cole et al., 2009; Johnston et al., 2011] that the
energetic internal wave beams emanating from topographic generation sites attenuate after interaction
with the upper ocean pycnocline.
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