18,665 research outputs found

    A new study of muons in air showers by NBU air shower array

    Get PDF
    The North Bengal University (NBU) air shower array has been in operation in conjunction with two muon magnetic spectrographs. The array incorporates 21 particle density sampling detectors around the magnetic spectrographs covering an area of 900 sq m. The layout of the array is based on the arrangement of detectors in a square symmetry. The array set up on the ground level is around a 10 m high magnetic spectrograph housing. This magnetic spectrograph housing limits the zenith angular acceptance of the incident showers to a few degrees. Three hundred muons in the fitted showers of size range 10 to the 4th power to 10 to the 5th power particles have so far been scanned and the momenta determined in the momentum range 2 - 440 GeV/c. More than 1500 recorded showers are now in the process of scanning and fitting. A lateral distribution of muons of energy greater than 300 MeV in the shower size range 10 to the 5th power to 7 x 10 to the 5th power has been obtained

    On the Measurement of Spherical Aberration Constants of the Projector Lens of an Electron Microscope

    Get PDF

    Flavour-Condensate-induced Breaking of Supersymmetry in Free Wess-Zumino Fluids

    Full text link
    Recently we argued that a particular model of string-inspired quantum space-time foam (D-foam) may induce oscillations and mixing among flavoured particles. As a result, rather than the mass-eigenstate vacuum, the correct ground state to describe the underlying dynamics is the flavour vacuum, proposed some time ago by Blasone and Vitiello as a description of quantum field theories with mixing. At the microscopic level, the breaking of target-space supersymmetry is induced in our space-time foam model by the relative transverse motion of brane defects. Motivated by these results, we show that the flavour vacuum, introduced through an inequivalent representation of the canonical (anti-) commutation relations, provides a vehicle for the breaking of supersymmetry (SUSY) at a low-energy effective field theory level; on considering the flavour-vacuum expectation value of the energy-momentum tensor and comparing with the form of a perfect relativistic fluid, it is found that the bosonic sector contributes as dark energy while the fermion contribution is like dust. This indicates a strong and novel breaking of SUSY, of a non-perturbative nature, which may characterize the low energy field theory of certain quantum gravity models.Comment: Discussion added in sections II and IV on quantum-gravity induced flavour mixing, references added, conclusions unchange

    Sensitivity of Astrophysical Observations to Gravity-Induced Wave Dispersion in Vacuo

    Get PDF
    We discuss possible signatures of quantum gravity for the propagation of light, including an energy-dependent velocity (refractive index), dispersion in velocity at a given energy, and birefringence. We also compare the sensitivities of different astrophysical observations, including BATSE data on GRB 920229, BeppoSAX data on GRB 980425, the possible HEGRA observation of GRB 920925c, and Whipple observations of the active galaxy Mrk 421. Finally, we discuss the prospective sensitivities of AMS and GLAST.Comment: LaTex, 3 page

    A methodology for the generation of the 2-D map from unknown navigation environment by traveling a short distance

    Get PDF
    A technique for generation of a 2-D space map by traveling a short distance is described. The space to be mapped can be classified as: (1) space without obstacles, (2) space with stationary obstacles, and (3) space with moving obstacles. This paper presents the methodology used to generate a 2-D map of an unknown navigation space. The ability to minimize the redundancy during traveling and maximize the confidence function for generation of the map are advantages of this technique

    Towards a microscopic construction of flavour vacua from a space-time foam model

    Full text link
    The effect on flavour oscillations of simple expanding background space-times, motivated by some D-particle foam models, is calculated for a toy-model of bosons with flavour degrees of freedom. The presence of D-particle defects in the space-time, which can interact non trivially (via particle capture) with flavoured particles in a flavour non-preserving way, generates mixing in the effective field theory of low-energy string excitations. Moreover, the recoil of the D-particle defect during the capture/scattering process implies Lorentz violation, which however may be averaged to zero in isotropic D-particle populations, but implies non-trivial effects in correlators. Both features imply that the flavoured mixed state sees a non-trivial flavour (Fock-space) vacuum of a type introduced earlier by Blasone and Vitiello in a generic context of theories with mixing. We discuss the orthogonality of the flavour vacua to the usual Fock vacua and the effect on flavour oscillations in these backgrounds. Furthermore we analyse the equation of state of the Flavour vacuum, and find that, for slow expansion rates induced by D particle recoil, it is equivalent to that of a cosmological constant. Some estimates of these novel non-perturbative contribution to the vacuum energy are made. The contribution vanishes if the mass difference and the mixing angle of the flavoured states vanish.Comment: 27 pages RevTex, 2 eps figures incorporate

    Enhanced Shot Noise in Tunneling through a Stack of Coupled Quantum Dots

    Get PDF
    We have investigated the noise properties of the tunneling current through vertically coupled self-assembled InAs quantum dots. We observe super-Poissonian shot noise at low temperatures. For increased temperature this effect is suppressed. The super-Poissonian noise is explained by capacitive coupling between different stacks of quantum dots

    Biological function of gramicidin: selective inhibition of RNA polymerase.

    Full text link

    Polarization bistability and resultant spin rings in semiconductor microcavities

    Full text link
    The transmission of a pump laser resonant with the lower polariton branch of a semiconductor microcavity is shown to be highly dependent on the degree of circular polarization of the pump. Spin dependent anisotropy of polariton-polariton interactions allows the internal polarization to be controlled by varying the pump power. The formation of spatial patterns, spin rings with high degree of circular polarization, arising as a result of polarization bistability, is observed. A phenomenological model based on spin dependent Gross-Pitaevskii equations provides a good description of the experimental results. Inclusion of interactions with the incoherent exciton reservoir, which provides spin-independent blueshifts of the polariton modes, is found to be essential.Comment: 5 pages, 3 figure
    corecore