21 research outputs found

    Using perovskite to determine the pre-shallow level contamination magma characteristics of kimberlite

    Get PDF
    It remains difficult to obtain reliable geochemical signatures of uncontaminated kimberlite magma from bulk rock studies due to the combined effects of crustal assimilation and element mobility during post-emplacement alteration processes. Groundmass perovskite (CaTiO3), a typical accessory phase, from Orapa (Botswana) and Wesselton (South Africa) kimberlites has been used to evaluate the isotope and trace element composition of the pre-contamination magmas and the effects of shallow level contamination. In-situ trace element signatures of Orapa and Wesselton perovskite grains are broadly similar and unaffected by crustal contamination. Single grain Sr-87/Sr-86 isotope ratios of perovskite from Orapa (0.7030-0.7036) are less scattered than bulk rock analyses (0.7063-0.7156), which are variably affected by contamination and late stage alteration. Initial Sr-87/Sr-86 isotope ratios of perovskite (0.7044-0.7049) from Wesselton overlap with published whole rock studies on fresh hypabyssal kimberlites (0.7042-0.7047). The limited intra-kimberlite variation in Sr isotope ratios recorded by the perovskite are unlikely to be due to crustal contamination as the calculated liquid compositions in equilibrium with the perovskite analysed typically have &gt;1500 ppmSr, and most common crustal lithologies underlying these kimberlites have relatively low Sr contents and are not highly radiogenic. Calculated pre-shallow level contamination magma compositions for Orapa and Wesselton have significantly fractionated LREE and highly variable non-smooth trace element patterns. Initial Sr and Nd isotope ratios of both kimberlites fall on the mantle Nd-Sr array with enriched Sr and slightly depleted Nd signatures, similar to Group I kimberlites. Overall, the trace element and isotopic composition of Orapa and Wesselton kimberlites are similar to the reported Group I kimberlites from southern Africa, which are derived by very low degrees of partial melting from a LREE depleted metasomatised sub-continental lithospheric mantle (SCLM) source. (C) 2013 Elsevier B.V. All rights reserved.</p

    Early Eocene Arctic volcanism from carbonate-metasomatized mantle

    Get PDF
    Melilitite, nephelinite, basanite, and alkali basalt, along with phonolite differentiates, form the Freemans Cove Complex (FCC) in the south-eastern extremity of Bathurst Island (Nunavut, Canada). New 40Ar/39Ar chronology indicates their emplacement between ~ 56 and ~ 54 million years ago within a localized extensional structure. Melilitites and nephelinites, along with phonolite differentiates, likely relate to the beginning and end phases of extension, whereas alkali basalts were emplaced during a main extensional episode at ~ 55 Ma. The melilitites, nephelinites, and alkali basalts show no strong evidence for significant assimilation of crust, in contrast to some phonolites. Partial melting occurred within both the garnet- and spinel-facies mantle and sampled sources with He, O, Nd, Hf, and Os isotope characteristics indicative of peridotite with two distinct components. The first, expressed in higher degree partial melts, represents a relatively depleted component (“A”; 3He/4He ~ 8 RA, εNdi ~ + 3 εHfi ~ + 7, γOsi ~ 0). The second was an enriched component (“B” 3He/4He + 70) sampled by the lowest degree partial melts and represents carbonate-metasomatized peridotite. Magmatism in the FCC shows that rifting extended from the Labrador Sea to Bathurst Island and reached a zenith at ~ 55 Ma, during the Eurekan orogeny. The incompatible trace-element abundances and isotopic signatures of FCC rocks indicate melt generation occurred at the base of relatively thin lithosphere at the margin of a thick craton, with no mantle plume influence. FCC melt compositions are distinct from other continental rift magmatic provinces worldwide, and their metasomatized mantle source was plausibly formed synchronously with emplacement of Cretaceous kimberlites. The FCC illustrates that the range of isotopic compositions preserved in continental rift magmas are likely to be dominated by temporal changes in the extent of partial melting, as well as by the timing and degree of metasomatism recorded in the underlying continental lithosphere

    Trace element and isotope geochemistry of perovskites from kimberlites of Southern Africa

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    USING PEROVSKITE TO DETERMINE THE PRE-SHALLOW LEVEL CONTAMINATION MAGMA CHARACTERISTICS OF 2 KIMBERLITE 3

    No full text
    Abstract: 281 words 15 Text: 6000 16 Number of references: 63 17 Number of figures: 11 18 Number of tables: 4 1

    Using perovskite to determine the pre-shallow level contamination magma characteristics of kimberlite

    No full text
    It remains difficult to obtain reliable geochemical signatures of uncontaminated kimberlite magma from bulk rock studies due to the combined effects of crustal assimilation and element mobility during post-emplacement alteration processes. Groundmass perovskite (CaTiO3), a typical accessory phase, from Orapa (Botswana) and Wesselton (South Africa) kimberlites has been used to evaluate the isotope and trace element composition of the pre-contamination magmas and the effects of shallow level contamination. In-situ trace element signatures of Orapa and Wesselton perovskite grains are broadly similar and unaffected by crustal contamination. Single grain Sr-87/Sr-86 isotope ratios of perovskite from Orapa (0.7030-0.7036) are less scattered than bulk rock analyses (0.7063-0.7156), which are variably affected by contamination and late stage alteration. Initial Sr-87/Sr-86 isotope ratios of perovskite (0.7044-0.7049) from Wesselton overlap with published whole rock studies on fresh hypabyssal kimberlites (0.7042-0.7047). The limited intra-kimberlite variation in Sr isotope ratios recorded by the perovskite are unlikely to be due to crustal contamination as the calculated liquid compositions in equilibrium with the perovskite analysed typically have &gt;1500 ppmSr, and most common crustal lithologies underlying these kimberlites have relatively low Sr contents and are not highly radiogenic. Calculated pre-shallow level contamination magma compositions for Orapa and Wesselton have significantly fractionated LREE and highly variable non-smooth trace element patterns. Initial Sr and Nd isotope ratios of both kimberlites fall on the mantle Nd-Sr array with enriched Sr and slightly depleted Nd signatures, similar to Group I kimberlites. Overall, the trace element and isotopic composition of Orapa and Wesselton kimberlites are similar to the reported Group I kimberlites from southern Africa, which are derived by very low degrees of partial melting from a LREE depleted metasomatised sub-continental lithospheric mantle (SCLM) source. (C) 2013 Elsevier B.V. All rights reserved.</p
    corecore