25 research outputs found

    Heparanase Facilitates Cell Adhesion and Spreading by Clustering of Cell Surface Heparan Sulfate Proteoglycans

    Get PDF
    Heparanase is a heparan sulfate (HS) degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys158-Asp171, termed KKDC) was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity

    Optimality and distortionary lobbying: regulating tobacco consumption

    Get PDF
    We examine policies directed at regulating tobacco consumption through three types of instruments: (i) an excise tax hindering consumption by increasing the price of cigarettes, (ii) prevention programs helping consumers to make choices that are more time consistent when trading-off the current pleasure from smoking and its future health harms, and (iii) smoking bans directly restricting consumption. First, on normative grounds, we focus on the optimal design of public policies maximizing the economy’s surplus. Second, in a positive perspective, we investigate how the lobbying activities of the tobacco industry, of smokers, and of anti-tobacco organizations may distort government intervention

    Microbe-host interplay in atopic dermatitis and psoriasis

    Get PDF
    Despite recent advances in understanding microbial diversity in skin homeostasis, the relevance of microbial dysbiosis in inflammatory disease is poorly understood. Here we perform a comparative analysis of skin microbial communities coupled to global patterns of cutaneous gene expression in patients with atopic dermatitis or psoriasis. The skin microbiota is analysed by 16S amplicon or whole genome sequencing and the skin transcriptome by microarrays, followed by integration of the data layers. We find that atopic dermatitis and psoriasis can be classified by distinct microbes, which differ from healthy volunteers microbiome composition. Atopic dermatitis is dominated by a single microbe (Staphylococcus aureus), and associated with a disease relevant host transcriptomic signature enriched for skin barrier function, tryptophan metabolism and immune activation. In contrast, psoriasis is characterized by co-occurring communities of microbes with weak associations with disease related gene expression. Our work provides a basis for biomarker discovery and targeted therapies in skin dysbiosis.Peer reviewe

    The Heparanase Inhibitor PG545 Attenuates Colon Cancer Initiation and Growth, Associating with Increased p21 Expression

    No full text
    Heparanase activity is highly implicated in cellular invasion and tumor metastasis, a consequence of cleavage of heparan sulfate and remodeling of the extracellular matrix underlying epithelial and endothelial cells. Heparanase expression is rare in normal epithelia, but is often induced in tumors, associated with increased tumor metastasis and poor prognosis. In addition, heparanase induction promotes tumor growth, but the molecular mechanism that underlines tumor expansion by heparanase is still incompletely understood. Here, we provide evidence that heparanase down regulates the expression of p21 (WAF1/CIP1), a cyclin-dependent kinase inhibitor that attenuates the cell cycle. Notably, a reciprocal effect was noted for PG545, a potent heparanase inhibitor. This compound efficiently reduced cell proliferation, colony formation, and tumor xenograft growth, associating with a marked increase in p21 expression. Utilizing the APC Min+/− mouse model, we show that heparanase expression and activity are increased in small bowel polyps, whereas polyp initiation and growth were significantly inhibited by PG545, again accompanied by a prominent induction of p21 levels. Down-regulation of p21 expression adds a novel feature for the emerging pro-tumorigenic properties of heparanase, while the potent p21 induction and anti-tumor effect of PG545 lends optimism that it would prove an efficacious therapeutic in colon carcinoma patients

    Clinical Significance of Heparanase Splice Variant (T5) in Renal Cell Carcinoma: Evaluation by a Novel T5-Specific Monoclonal Antibody

    Get PDF
    <div><p>T5 is a novel splice variant of heparanase, an endo-β-D-glucuronidase capable of cleaving heparan sulfate side chains at a limited number of sites. T5 splice variant is endowed with pro-tumorigenic properties, enhancing cell proliferation, anchorage independent growth and tumor xenograft development despite lack of heparan sulfate-degrading activity typical of heparanase. T5 is over expressed in the majority of human renal cell carcinoma biopsies examined, suggesting that this splice variant is clinically relevant. T5 is thought to assume a distinct three-dimensional conformation compared with the wild type heparanase protein. We sought to exploit this presumed feature by generating monoclonal antibodies that will recognize the unique structure of T5 without, or with minimal recognition of heparanase, thus enabling more accurate assessment of the clinical relevance of T5. We provide evidence that such a monoclonal antibody, 9c9, preferentially recognizes T5 compared with heparanase by ELISA, immunoblotting and immunohistochemistry. In order to uncover the clinical significance of T5, a cohort of renal cell carcinoma specimens was subjected to immunostaining applying the 9c9 antibody. Notably, T5 staining intensity was significantly associated with tumor size (p = 0.004) and tumor grade (p = 0.02). Our results suggest that T5 is a functional, pro-tumorigenic entity.</p> </div
    corecore