2 research outputs found

    Energy-efficient RL-based aerial network deployment testbed for disaster areas

    Get PDF
    Rapid deployment of wireless devices with 5G and beyond enabled a connected world. However, an immediate demand increase right after a disaster paralyzes network infrastructure temporarily. The continuous flow of information is crucial during disaster times to coordinate rescue operations and identify the survivors. Communication infrastructures built for users of disaster areas should satisfy rapid deployment, increased coverage, and availability. Unmanned air vehicles (UAV) provide a potential solution for rapid deployment as they are not affected by traffic jams and physical road damage during a disaster. In addition, ad-hoc WiFi communication allows the generation of broadcast domains within a clear channel which eases one-to-many communications. Moreover, using reinforcement learning (RL) helps reduce the computational cost and increases the accuracy of the NP-hard problem of aerial network deployment. To this end, a novel flying WiFi ad-hoc network management model is proposed in this paper. The model utilizes deep-Q-learning to maintain quality-of-service (QoS), increase user equipment (UE) coverage, and optimize power efficiency. Furthermore, a testbed is deployed on Istanbul Technical University (ITU) campus to train the developed model. Training results of the model using testbed accumulates over 90% packet delivery ratio as QoS, over 97% coverage for the users in flow tables, and 0.28 KJ/Bit average power consumption

    Evaluation of nutritional status in pediatric intensive care unit patients: the results of a multicenter, prospective study in Turkey

    Get PDF
    IntroductionMalnutrition is defined as a pathological condition arising from deficient or imbalanced intake of nutritional elements. Factors such as increasing metabolic demands during the disease course in the hospitalized patients and inadequate calorie intake increase the risk of malnutrition. The aim of the present study is to evaluate nutritional status of patients admitted to pediatric intensive care units (PICU) in Turkey, examine the effect of nutrition on the treatment process and draw attention to the need for regulating nutritional support of patients while continuing existing therapies.Material and MethodIn this prospective multicenter study, the data was collected over a period of one month from PICUs participating in the PICU Nutrition Study Group in Turkey. Anthropometric data of the patients, calorie intake, 90-day mortality, need for mechanical ventilation, length of hospital stay and length of stay in intensive care unit were recorded and the relationship between these parameters was examined.ResultsOf the 614 patients included in the study, malnutrition was detected in 45.4% of the patients. Enteral feeding was initiated in 40.6% (n = 249) of the patients at day one upon admission to the intensive care unit. In the first 48 h, 86.82% (n = 533) of the patients achieved the target calorie intake, and 81.65% (n = 307) of the 376 patients remaining in the intensive care unit achieved the target calorie intake at the end of one week. The risk of mortality decreased with increasing upper mid-arm circumference and triceps skin fold thickness Z-score (OR = 0.871/0.894; p = 0.027/0.024). The risk of mortality was 2.723 times higher in patients who did not achieve the target calorie intake at first 48 h (p = 0.006) and the risk was 3.829 times higher in patients who did not achieve the target calorie intake at the end of one week (p = 0.001). The risk of mortality decreased with increasing triceps skin fold thickness Z-score (OR = 0.894; p = 0.024).ConclusionTimely and appropriate nutritional support in critically ill patients favorably affects the clinical course. The results of the present study suggest that mortality rate is higher in patients who fail to achieve the target calorie intake at first 48 h and day seven of admission to the intensive care unit. The risk of mortality decreases with increasing triceps skin fold thickness Z-score
    corecore