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Energy-Efficient RL-Based Aerial Network
Deployment Testbed for Disaster Areas

Mehmet Ariman, Mertkan Akkoç, Talip Tolga Sarı, Muhammed Raşit Erol, Gökhan Seçinti, and Berk Canberk

Abstract—Rapid deployment of wireless devices with 5G and
beyond enabled a connected world. However, an immediate
demand increase right after a disaster paralyzes network in-
frastructure temporarily. The continuous flow of information is
crucial during disaster times to coordinate rescue operations and
identify the survivors.

Communication infrastructures built for users of disaster areas
should satisfy rapid deployment, increased coverage, and avail-
ability. Unmanned air vehicles (UAV) provide a potential solution
for rapid deployment as they are not affected by traffic jams
and physical road damage during a disaster. In addition, ad-hoc
WiFi communication allows the generation of broadcast domains
within a clear channel which eases one-to-many communications.
Moreover, using reinforcement learning (RL) helps reduce the
computational cost and increases the accuracy of the NP-hard
problem of aerial network deployment.

To this end, a novel flying WiFi ad-hoc network management
model is proposed in this paper. The model utilizes deep-
Q-learning to maintain quality-of-service (QoS), increase user
equipment (UE) coverage, and optimize power efficiency. Fur-
thermore, a testbed is deployed on Istanbul Technical Univer-
sity (ITU) campus to train the developed model. Training results
of the model using testbed accumulates over 90% packet delivery
ratio as QoS, over 97% coverage for the users in flow tables, and
0.28 KJ/Bit average power consumption.

Index Terms—Ad-hoc, aerial network, energy-efficient,
MavLink, QoS, SDN.

I. INTRODUCTION

DEPLOYMENT of 5G and beyond networks in conjunc-
tion with connectivity-based mobile services increased

the utilization of radio frequency (RF) bands. These inno-
vations create a connected world and introduce problems in
disaster cases as every mobile entity acts as a communication
hub. The RF environment has no safety lane to allow essential
communication to survive during a disaster. The most recent
example of such a scenario was observed after an earthquake in
Croatia on date March 22, 2020, as depicted in Fig. 1 [1], [2].
These incidents, combined with physical access constraints
in disaster areas, make the aerial network (AN) a potential
solution to provide temporary infrastructure for maintaining
continuity of communication in the disaster areas. The nature
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of infrastructure within disaster areas is agile, and demand is
on a fast-changing trend.

As detailed in the rest of this section, existing work in the
literature indicates that AN is still an open topic with its agile
nature. Furthermore, it has great potential for handling non-
persistent traffic. However, it also introduces new challenges to
address. Though current work in literature for AN focus on de-
coupling the control layer from unmanned air vehicle (UAV),
reducing latency, and easing configuration, these works lack
addressing physical network resource allocations for UAVs
and deployment of the proposed method due to the infeasible
assumption that is not compatible with implementation facts.
On the contrary, the work proposed within this paper focuses
on realizing a testbed for the proposed method. It focuses on
physical resource allocations of the network, that is, WiFi
channels in this specific case. This paper defines a novel
network architecture to provide an AN infrastructure for dis-
aster areas with zero handover delay, quality-of-service (QoS)
awareness, and energy efficiency. This new architecture has
software defined networking (SDN) in the control plane with
a reinforcement learning (RL) powered decision mechanism
to enable the deployment of a controller on general-purpose
computers.

Network infrastructures utilizing UAVs are suitable for han-
dling backend connections for on-demand, rapidly changing
networks. That is why the number of articles focusing on
AN is increasing in literature. For example, [3] proposes an
architecture that can be constructed quickly and effectively
considering the delay performance of the network in disaster
scenarios. Furthermore, [4] also highlights the similarities of
AN with mobile ad-hoc networks (MANET) and vehicular
ad-hoc networks (VANET) and challenges introduced by AN
which are 3-D mobility, network convergence time and lack
of computing resources for solving complex routing deci-
sions. [5] provides a detailed performance analysis on AN
for complex routing algorithms widely used in MANETs
and VANETs, highlighting the bottleneck on network con-
vergence. To this end, [4] suggests the utilization of SDN to
decouple complex routing decisions from UAV nodes in AN.
In addition, [4] focuses on resolving the resilience and fail
tolerance in the control domain by introducing Block-chain for
distributed controller layer. What is more, [6] also favors the
use of SDN for AN deployments as it eases the configuration
of the network for the operators by utilizing the network
function virtualization (NFV) phenomenon. Both [4] and [6]
lack inspection of physical resource allocation that is vital for
deploying proposed methods. In addition, [6] indicates that
current hardware and software limitations prevent the proposed
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Fig. 1. Median RTT value on Croatia earthquake on March 22, 2020 [1].

method from realization.
In [7], traffic offloading from wireless access points (WAP)

using UAV base stations (BS) and cellular communication
nodes is inspected to reduce queuing delay for the wireless
subscribers (WS). [7] utilizes SDN to exploit global view
and address spectrum and channel allocation for the access
nodes. [7] exploits the location of UAV BS, spatial spectrum
occupancy, and active flow information within the network.

The research on using UAVs in collaborative data collection
and processing has also increased in recent years. [8] and
[9] utilizes UAVs within data collection. In [8], UAVs are
proposed to address the network scarcity problem in the
Internet of things (IoT) networks. UAVs are used as relay
agents in delay tolerant blockchain to handle secure data stor-
age with help of federated learning that depends on iterative
data sharing to prevent the leak of private information. In
addition to information transfer in [8], [9] implements the IoT
capability on UAVs that serves as surveillance entities.

In [10], a dynamic clustering algorithm has been developed
to manage aerial network deployment. Load and battery in-
formation of the UAV is utilized by [10] to generate policy
output. The policy definition requires a static model for the
network parameters such as user mobility rate, traffic demand
rate, etc. This limits the solution’s applicability to a single
environment due to a lack of adaptation.

The most fundamental problems of ANs are UAVs’ limited
energy and computing capacity. [11] and [12] propose methods
that improve energy efficiency and latency by offloading the
computing operations on UAVs to the neighboring UAV, edge,
or cloud servers, depending on their availability. Effective
topology management is also used to increase the availability
of the network. In this context, [13] and [14] not only
provide energy management by controlling the replenishment
and movements of UAVs thanks to their proposed topology
management method but also specifically try to improve the
quality of video traffic on the network. [15] tries to improve the
latency and packet loss performances of the AN by utilizing
SDN network technology and controlling the routing tables.

In [16], UAV BS are utilized to increase resource utilization
and reduce cost for the infrastructure provided. Moreover, the
area coverage problem is attacked from the physical standpoint
to define the size of the deployed network. SINR is used as the
QoS metric for balancing the optimization problem between
the number of UAV BS and the bandwidth perceived by the
UEs.

This paper attacks the QoS, service fairness and availability,
and energy efficiency by contributing to the literature as

follows:
• Definition of opportunistic aerial network infrastructure

utilizing ad-hoc WiFi communication.
• Aerial network deployment model using RL to reduce

UAV deployment complexity to cover UEs and maintain
pre-defined QoS metrics.

• Definition of QoS feedback mechanism using UE cover-
age and flow density rather than area coverage and signal
quality parameters widely used in the existing literature.

• Implementation of aerial network testbed.

II. ARCHITECTURE

This paper defines a network architecture to realize an
AN utilizing UAVs for handling rapidly changing networks
via centralized control embracing the SDN approach on the
control plane. The overall architecture of the proposed in-
frastructure is depicted in Fig. 2. This work focus on the
access network deployed in the disaster area. Furthermore, a
5 GHz backend connection is intended to transfer the data to
one of the multiple local backend gateway entities in disaster
areas. It is assumed that the local backend gateway entity
is equipped with reliable communication interfaces such as
satellite, cellular, optical, etc.

The proposed network architecture consists of four different
entities. The first architectural entity is a user equipment (UE),
the primary user of the infrastructure provided. These entities
have a 2.4 GHz WiFi interface capable of maintaining ad-hoc
communication. These entities are the source of the traffic
generated for the given architecture. The second entity is the
communication entity (CommEnt) which is responsible for
bridging UE data with the data backend. Moreover, these
entities are equipped with 2.4 GHz WiFi, 5 GHz WiFi, and a
USB interface. WiFi is a standard communication interface on
phones and tablets and allows disaster victims to communicate
through UAVs using opportunistic channels. The third entity
is the flight management unit (FMU), which runs an auto-
pilot, maintains a 433 MHz RF control link, and provides
telemetry data for the control plane decisions. Long-range
communication interface for low bandwidth communication
traffic for the ground control station of the UAV. 433 MHz is
picked for long-range communication as it resides in industrial
scientific medical (ISM) band that does not require any license
for communication. This frequency band would be 868 MHz
in the US. The last entity is the ground control station (GCS).
This entity is the workhorse of the control plane, and its details
are given in Section II-A.

A centralized SDN controller orchestrates the network uti-
lizing the information retrieved from the UAVs. The informa-
tion provided by the UAV is constructed by a communication
entity placed on top of it. The information the communication
entity provides is consumed by the SDN controller placed
in GCS to generate control decisions of the network. SDN
controller requires WiFi channel status from the UAVs to select
the WiFi channel for UEs and UAVs to communicate in the
next time slot. This information consists of each channel’s
received signal strength to interference (RSSI) on the 2.4 GHz
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Fig. 2. Opportunistic aerial network service model.

baseband. Furthermore, an active flow list is also sent from
UAV which is the list of flows within the flow table that
has at least a single transaction since the last query of the
SDN controller. This information is crucial for the SDN
controller to determine the number of active flows within
the system. In addition, battery information is also provided
by UAVs to the SDN controller so that the SDN controller
is capable of mitigating low-battery UAVs and capable of
optimizing the load on the UAVs. Last, location information
is also provided by UAVs so that the SDN controller is
aware of the actual position of the UAVs. The SDN controller
optimizes the number of active UAVs analogous to the set-
cover problem by executing policies for handovers, load-
balancing, and swapping the low-battery UAVs as needed
using RL. The policies executed by the SDN controller provide
scalable power consumption performance while maintaining
SLA levels for the UE coverage and the QoS. The link between
the UAV and the GCS is sustained through the 433 MHz
MavLink interface through the telemetry module.

UAVs maintain the communication of the UEs in the novel
agile infrastructure defined within the context of this paper
through a 2.4 GHz ad-hoc WiFi link. In addition, UAVs bridge
the data plane to the backend through a 5 GHz infrastructure
WiFi link. The control plane of the UAV nodes is connected
to the GCS via a 433 MHz MavLink connection, as explained
earlier in this section. FMU placed on the UAV is responsible
for handling auto-pilot tasks and gathering sensor information.
In addition, FMU also handles MavLink messaging interfaces.
Furthermore, FMU also feeds location and battery data to the
communication entity as needed.

The information required by the SDN controller and gen-
erated by UAV in this architecture is facilitated by utilizing
a reserved message type in the ”Message Type” field of the
MavLink protocol, which is illustrated in Fig. 3. The AN-
specific protocol handling for passing the information required
by the SDN controller is realized using the message protocol

Fig. 3. MAVLink message format [17].

explained in Table I. The message ID used within standard
MavLink is 0xFFFFFF.

A. Ground Control Station

GCS consists of Ground Controller and SDN Controller, as
depicted in Fig. 4.

1) Ground controller: Ground Controller is responsible for
bridging inter-UAV and SDN controller messages. Further-
more, it has direct access to the 433 MHz telemetry module
connected to the controller via USB. MavLink messages
received from UAV are encapsulated into a TCP message and
transmitted to the SDN controller for the decision mechanism
to operate.

Ground Controller also collects the control messages
generated by the SDN controller and delivers them to the
UAVs for effective orchestration of the network.

2) SDN controller: SDN controller is responsible for pro-
cessing the information received from the UAVs through
MavLink through Ground Controller. The information received
is processed via an RL engine for each UAV agent to decide
on the following action if needed. This action is generated
depending on the battery, location, flow table load, and the
number of users assigned to the UAV and its closest neighbor.
The cost induced by RL occurs only in the training phase to
better adapt the weights for the inference. Once weights are
fixed, the computational cost of running inference is constant.
In addition, the rationale behind utilizing RL is to reduce
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the computational cost of the problem at hand. The problem
is deploying a minimum number of UAVs to ensure cell
coverage and maintaining agreed QoS metrics. This problem
is proved to be NP-hard and is detailly explained in [16]. The
rationale behind including neighbor status in input parameters
is to allow offloading of the current traffic to the neighbor
and reduce overall power consumption when inference result
provisions acceptable QoS even when the number of active
UAVs is reduced.

QoS element of the constraint list is ignored to prove the
NP-hardness of the problem at hand using (1). In (1), ωi is
the status of the UAV, F is the combined set of flow tables
for all UAVs, Fi is the flow table of UAV i, A is the set of
active UAVs, C is the set of charging UAVs, U is the list of
all UEs, idi is the rule of UEi, and NUAV is the number of
all UAVs. Optimization problem (1) minimizes the number of
active flow tables, indirectly active UAVs, to cover all UEs by
having at least one id from each that exists in U . This problem
minimizes the number of active UAVs to cover all UEs in flow
tables and is analogous to the known set-cover optimization
problem that is NP-hard.

minimize
NUAV∑
i=1

ωiFi

ωi :

{
1, UAV i ∈ A

0, UAV i ∈ C

subject to
idi ∈ Fi ≥ 1 ∀ idi ∈ U
Fi ≤ 1 ∀ i ∈ {1, 2, 3, ..., NUAV }
Fi ∈ F

(1)

In summary, the deep-Q-network (DQN) of the SDN con-
troller that runs inference for each UAV agent is constructed
as a multi-layer perceptron (MLP) with four layers. These
layers are named input layer, internal layer one, internal layer
two, and output layer. The input layer (IL) uses a battery,
number of active flows, number of active users, position X,
position Y, position Z, neighbor’s battery, neighbor’s number
of active flows, neighbor’s number of active users, neighbor’s
position X, neighbor’s position Y, neighbor’s position Z, state

TABLE I
AN MESSAGE TYPES.

AN
message

ID
(1 byte)

Content Direction*
(1 byte)

Message
payload

(254 bytes)

0 Flow
install 0 OpenFlow

payload

1 Flow
remove 0 OpenFlow

payload

2 Channel
status 0

Active (0)
/Deactive (1)

flag
(1 byte)

Unused

3 RSSI
values 1

RSSI pair
for each
channel

2 bytes
×

126 pairs
Channel

ID
(1 byte)

RSSI
values

(1 byte)
...

4
Active
user

number
1

Unsigned
int

(2 bytes)
Unused

5 Active
flow

number

1

Flow pair
for each

row

2 bytes
×

126 pairs
Row
ID

(1 byte)

Flow
ID

(1 byte)
...

* 0: GCS to UAV, 1: UAV to GCS

of each UAV in the system. The size of the input layer
accumulates to (12+ max number of UAVs). This will be
referenced as size(IL) in the rest of this paper. The output layer
stores the probabilities of each possible outcome: Handover,
callback, and hold for each UAV. The overall structure of MLP
is size(IL) (input) × (size(IL))2 × (size(IL))3 × 3 (output)
layers.

The aforementioned MLP inference is run for each UAV,
and the result of inference is used as the RL counterpart of ωi

in (1). The RL model includes battery level and the number
of users by activating them in the input layer in addition to
the core set-cover problem given in (1). The training session is
required for the RL model to run inference before deployment.
The QoS in (2), UE coverage, and power consumption factor in
(4) values used in the reward function given in (3) are used in
the feedback loop to define weights for the MLP connections
during the training cycle.

The Algorithm 1 performs inference and generates RL
counterpart of ωi in (1) in the first for loop. The output of
each round is fed as a reward function given in (3) to generate
a fitness function for the training.

During training, the rewarding mechanism is constructed
using the metrics given below:

• QoS: This item represents the ratio of the packets de-
livered from source to sink successfully. This parameter
depends on the availability of the flow table as well as the
coverage of the UE by the UAV. The pre-defined service
level agreement (SLA) to achieve 90% and above. The
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QoS is the second most significant item in the reward
equation. The ratio is normalized to 100 scales in (2) and
multiplied by 1.3 in (3). The weight of QoS in the reward
equation is derived empirically with respect to coverage
and power consumption. This parameter appears as QoS
in the reward equation as well. The computation of QoS
is explained in (2). The parameters of (2), NUE is the
number of UEs, TGi is the traffic generated by UEi, L
is the size of the flow table, SRi

is the packet statistics
of rule i in the flow table, and NUAV is the number of
UAVs.

QoS∗ = 100×
∑NUAV

i=1 (
∑L

j=1 SRj )∑NUE

i=1 TGi

(2)

• Power consumption: This is the power consumed for the
whole network and measured in KJ/bit. This factor will
appear as Pow in the power consumption factor equa-
tion. The reward mechanism punishes any rise in power
consumption, while drops have been rewarded. Power
consumption factors for various intervals are utilized to
generate reward functions. These factors are derived by
experiment and given in (4).

• Coverage: Coverage is defined as the number of users
that has at least one flow installed on the UAVs and are
capable of running successful transactions. As connectiv-
ity for UEs is crucial in disaster areas, this element has
the highest impact on the reward equation. This appears
as Cov in the reward equation.

The reward equation used for training the network is given
below:

Reward = (QoS×1.3)+(Cov×1.5)+PowConFactor, (3)

PowConFactor =



110, if 0.25 > Pow > 0

60, if 0.30 > Pow ≥ 0.25

40, if 0.35 > Pow ≥ 0.3

15, if 0.45 > Pow ≥ 0.35

10, if 0.60 > Pow ≥ 0.45

1, if 1.00 > Pow ≥ 0.6

1/Pow, otherwise.

(4)

The values given in the reward equation and power con-
sumption factor are derived empirically from tests conducted
using the aerial testbed developed.

III. USE CASES

We demonstrate two use cases for given network architec-
ture using the new infrastructure. The first is the handover
mechanism that happens once an active UAV is about to drain
its battery and requires replacement. We give details about this
use case in Section III-A. The following use case is new cell
deployment which happens when a new flow or user is added
to the network. While this happens, the SDN controller extends
the network with new UAVs. We discuss this mechanism in
Section III-B.

A. Handover Mechanism

In this section, we describe the handover mechanism within
the proposed network architecture in detail. The handover
mechanism is changing the UAV that provides network access
to UE to another UAV. Using our testbed implementation;
we illustrate the handover process in Fig. 5. Additionally,
Fig. 6, uses a sequence diagram to show this handover process
in more detail. The GCS collects the UAV info: Location,
load information of the flow table, UE coverage, and battery
information. Then the inference is run to decide the action
for the current state. Suppose a swap action is triggered
for a particular UAV. In that case, an exact copy with the
same configuration in terms of flow table is prepared and
deployed to the nearby location. Furthermore, once a duplicate
UAV reaches its position activation signal is generated for the
duplicate, and the original UAV is deactivated to complete the
sequence.

SDN controller uses custom MavLink messages to control
UAV’s behavior and monitor UAV flight data. Our handover
process embraces a handover mechanism that does not disrupt
communication during the handover period. SDN controller
uses a neural network (NN) to make various decisions using
the mission data of the UAVs, such as battery level and traffic
demand of UEs on the site. If a UAV’s battery level is low,
the SDN controller initiates the handover process to keep
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Algorithm 1 Action generation and execution

Input: UAVs
1: Decisions = new List < Action > ()
2: for UAV in UAV s do
3: Decisions(UAV ) = AN.runUavInference(
4: Battery,
5: NumOfActiveFlows,
6: NumOfActiveUsers,
7: Location.X,
8: Location.Y,
9: Location.Z,

10: Neighbor.Battery,
11: Neighbor.NumOfActiveFlows,
12: Neighbor.NumOfActiveUsers,
13: Neighbor.Location.X,
14: Neighbor.Location.Y,
15: Neighbor.Location.Z,
16: Foreach UAV in UAV s UAV[UavIdx].IsActive)
17: end for
18: for Decision in Decisions do
19: if Handover then
20: Dup = SDN.Duplicate(UAV )
21: SDN.SendAndWait(Dup)
22: SDN.Activate(Dup)
23: SDN.DeactivateAndLand(UAV )
24: else if Callback then
25: SDN.DistributeF lows(UAV )
26: SDN.DeactivateAndLand(UAV )
27: else if Hold then
28: Donothing
29: end if
30: end for
31: WiFiChannel = AN.SelectChannel(UAV s.RssiList)
32: SDN.DistributeChannel(Channel)
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Ground 
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Fig. 6. Sample handover mechanism process with low battery.

providing service to existing UEs. Once the SDN controller
decides to switch the active UAV, it prepares the replica of
the active UAV with pre-installed flow rules and sends it to
the 2-meter perimeter of the active UAV. When the replica
reaches its mission position, as depicted in Fig. 5, the GCS
sends an activation message to the replica UAV to start the
handover. Then, GCS sends a deactivation message to the
active UAV with a low battery to stop duplicate messages
from circulating in the network. Finally, a deactivated UAV is
commanded to return home to complete the handover with the
handover mechanism for re-charging purposes.

B. New Cell Deployment

The following use case we inspected is when the demand
increases around certain spots in the network. When this
happens, GCS initiates a new cell deployment process. As
briefly explained in Section II-A2, GCS keeps track of the
active flows, active UEs, UAV nodes with their battery status
and locations, WiFi channel status, and QoS. Using this data,
Algorithm 1 makes decisions throughout the network. GCS
makes these decisions by using its deep RL-based controller.
Reduced QoS, increased demand, and the addition of new
users are capable of generating a new cell deployment action.
The result of such action with the addition of new UE
is demonstrated in Figs. 7(a) and 7(b). Additionally, if the
demand decreases, the GCS can call back UAVs similarly.
Combination of these yields, energy-efficient operation of
UAV network, and better QoS.

IV. PERFORMANCE EVALUATION

This section contains the performance evaluation of the
proposed model and a walk-through of the results to verify
the validity of the solution.

A. Test-bed Setup

Our testbed consists of 4 NXP HoverGames [18] drones
equipped with three cell Lithium Polymer (LiPo) batteries
that can provide up to 25 minutes of flight time depending
on the air conditions. Also, each drone has Raspberry Pi 4
Computer Model B [19] with 16 GB Micro SD card as seen
in Fig. 8. We employ Ubuntu 21.04 as an operating system
and utilize Open vSwitch 2.15.0 [20] on each Raspberry Pi
to create a data plane. Raspberry Pi is powerful, supports
WiFi, has 4 GB memory, and a Quad-Core 1.5 GHz ARM-
v8 processor to efficiently run an inference with MLP. It
runs in battery-powered environments without performance
drawbacks. Additionally, we use MAVSDK Library [21] to
each Raspberry Pi to create an interface and use MavLink
protocol [22] between the Raspberry Pi and the FMU of a
drone, which has FMUK66-based PixHawk autopilot firmware
[23]. We also use the MavLink protocol between the GCS and
the drone. Furthermore, we use Packet Sender [24] software to
create 3 to 25 flows from each ground Raspberry Pi to drone
Raspberry Pi. We classify these flows as TCP, UDP, and VoIP,
which are randomly distributed.

GCS consists of a general-purpose laptop with Intel(R)
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(a) In theory

(b) In action

Fig. 7. New cell deployment scenario.

Fig. 8. Test-bed setup on the drone.

Core (TM) i7-1065G7 CPU, 16 GB RAM, and Windows 10
Pro operating system. Furthermore, two virtual machines are
deployed on GCS, one of which acts as an Air-Ground bridge
while the other one handles the SDN Controller role. Virtual

Fig. 9. UE Coverage trend in testbed-based training of ML model.

Fig. 10. QoS, packet delivery ratio, the trend in testbed-based training of ML
model.

machines are equipped with Ubuntu 20.04.2 LTS operating
system. The QGroundControl is installed on the Air-Ground
bridge to exchange information with UAVs using the MavLink
protocol on GCS. In addition, Open network operating system
(ONOS) [25] is installed on the SDN Controller entity virtual
machine to handle control plane activities in the architecture
given in Fig. 2 and explained in Section II.

This testbed is utilized for training the model proposed
in Section II-A2. During the training loop, each episode is
divided into 128 decision cycles in which the inference of
DQN generates one of the three decisions available for each
UAV; hold, handover, or callback, as explained in Algorithm 1.
The result of the decision on the testbed is fed back to the
model for tracing the training trend to observe the model’s
validity. Furthermore, the status of the topology and the link
utilization is monitored through ONOS. The result of the
experiment is presented in Section IV-B.

B. Performance Results

Performance results presented in this section prove that the
proposed model is valid as DQN intends to maximize the UE
coverage as prioritized by the reward function. The rationale
behind this is to provide a fair share of the flow table for each
UE during disaster times. The proposed model converges to
full coverage within 40 episodes, as depicted in Fig. 9. Fig. 9
corresponds to the analogous of idi ∈ Fi in (1). Then the
model works on optimizing QoS to reach 90% packet delivery
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TABLE II
PERFORMANCE COMPARISON.

Method Coverage QoS Power
Proposed method 97% ≥90% 0.28 KJ/bit
[16] 98% ≥70% 0.42 KJ/bit

ratio as seen in Fig. 10. The QoS convergence is later than UE
coverage as the reward factor for coverage is higher within (3).
The proposed model can reach a packet delivery ratio higher
than 90% within 80 episodes. Figs. 9, 10, and 11 RL model
first explores the search space for an optimal solution. This
results in low reward and less performance for the warm-up
period. Then the model exploits its discoveries and ramps up
the reward and performance in later episodes. However, there
are still oscillations in reward and performance, even in late
episodes. This is expected and proves that the training model
applies random walks to prevent over-fitting and expands the
search space and knowledge instead of getting stuck in local
peaks. The model then achieves stable power consumption
output measured in KJ/bit for maintaining a scalable solution
in terms of data processed and UE covered. As depicted in
Fig. 12, the proposed model is capable of generating stable
per-bit consumption as opposed to [3], which generates power
consumption result, which highly varies depending on data
processed by the network. Though the packets delivered within
the network and the UEs covered increase through time, the
model keeps the power consumption within the target range,
which is 0.28 KJ/Bit, as depicted in Fig. 12.

The learning trend and capability of the model with our
testbed in action are depicted in Fig. 11 in which the model
reaches 94% of the maximum reward available through time.

Finally, the proposed method is compared with [16]. The
comparison results are represented in Table II. [16] tries to
increase the area coverage for serving the UEs. To this end,
the power consumption of [16] is slightly higher than the
method proposed within the context of this paper. Though [16]
provides good SINR for the UE in terms of coverage, it does
not increase the intensity of the UAVs in areas where UEs are
denser. Moreover, it fails to provide high QoS compared to the
proposed method. In terms of coverage, the proposed method
demonstrates comparable performance compared to [16]. The
network lifetime of the [16] tends to be lower over time as it
consumes more energy and tends to keep more UAVs in the
air.

V. CONCLUSIONS

In this work, we have presented a novel infrastructure for
disaster areas based on SDN and orchestrated the underlying
aerial network to maximize UE coverage and keep QoS at the
target level while optimizing the energy efficiency measured
in KJ/bit. As opposed to [3], the proposed method provides
a scalable power consumption scheme as it stabilizes per bit
consumption for a different amount of data processed.

Fig. 11. Reward trend of testbed-based training of ML model.

Fig. 12. Power consumption trend in testbed-based training of ML model.
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