8 research outputs found

    Function and downstream signaling of GABAB receptors in developing respiratory network of mouse

    Get PDF
    GABAB-Rezeptoren gehören zu der Familie der metabotrophen Rezeptoren, welche eine langsame synaptische Übertragung im zentralen Nervensystem übermitteln. In dieser Arbeit haben wir die Funktion und die Signalübertragung der GABAB-Rezeptoren im pre-Bötzinger-Komplex untersucht. Unsere Daten stellen eindeutig dar, dass die Miteinbeziehung der GABAB-Rezeptoren in einem neuronalen Netz den extrazellularen pH-Wert erfaßen. Unsere Experimente haben aufgedeckt, dass die GABAB-Rezeptoren neuronale Ih Kanäle im pre-Bötzinger-Komplex modulieren. Diese Modulation schien eindeutige signalisierende Bahnen mit einzubeziehen

    Loss of transforming growth factor-beta 2 leads to impairment of central synapse function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The formation of functional synapses is a crucial event in neuronal network formation, and with regard to regulation of breathing it is essential for life. Members of the transforming growth factor-beta (TGF-β) superfamily act as intercellular signaling molecules during synaptogenesis of the neuromuscular junction of <it>Drosophila </it>and are involved in synaptic function of sensory neurons of <it>Aplysia</it>.</p> <p>Results</p> <p>Here we show that while TGF-β2 is not crucial for the morphology and function of the neuromuscular junction of the diaphragm muscle of mice, it is essential for proper synaptic function in the pre-Bötzinger complex, a central rhythm organizer located in the brainstem. Genetic deletion of TGF-β2 in mice strongly impaired both GABA/glycinergic and glutamatergic synaptic transmission in the pre-Bötzinger complex area, while numbers and morphology of central synapses of knock-out animals were indistinguishable from their wild-type littermates at embryonic day 18.5.</p> <p>Conclusion</p> <p>The results demonstrate that TGF-β2 influences synaptic function, rather than synaptogenesis, specifically at central synapses. The functional alterations in the respiratory center of the brain are probably the underlying cause of the perinatal death of the TGF-β2 knock-out mice.</p

    Loss of transforming growth factor-beta 2 leads to impairment of central synapse function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The formation of functional synapses is a crucial event in neuronal network formation, and with regard to regulation of breathing it is essential for life. Members of the transforming growth factor-beta (TGF-β) superfamily act as intercellular signaling molecules during synaptogenesis of the neuromuscular junction of <it>Drosophila </it>and are involved in synaptic function of sensory neurons of <it>Aplysia</it>.</p> <p>Results</p> <p>Here we show that while TGF-β2 is not crucial for the morphology and function of the neuromuscular junction of the diaphragm muscle of mice, it is essential for proper synaptic function in the pre-Bötzinger complex, a central rhythm organizer located in the brainstem. Genetic deletion of TGF-β2 in mice strongly impaired both GABA/glycinergic and glutamatergic synaptic transmission in the pre-Bötzinger complex area, while numbers and morphology of central synapses of knock-out animals were indistinguishable from their wild-type littermates at embryonic day 18.5.</p> <p>Conclusion</p> <p>The results demonstrate that TGF-β2 influences synaptic function, rather than synaptogenesis, specifically at central synapses. The functional alterations in the respiratory center of the brain are probably the underlying cause of the perinatal death of the TGF-β2 knock-out mice.</p

    Phosphorylation via PKC Regulates the Function of the Drosophila Odorant Co-Receptor

    Get PDF
    Insect odorant receptors (ORs) have a unique design of heterodimers formed by an olfactory receptor protein and the ion channel Orco. Heterologously expressed insect ORs are activated via an ionotropic and a metabotropic pathway that leads to cAMP production and activates the Orco channel. The contribution of metabotropic signaling to the insect odor response remains to be elucidated. Disruption of the Gq protein signaling cascade reduces the odor response (Kain et al., 2008). We investigated this phenomenon in HEK293 cells expressing Drosophila Orco and found that phospholipase C (PLC) inhibition reduced the sensitivity of Orco to cAMP. A similar effect was seen upon inhibition of protein kinase C (PKC), whereas PKC stimulation activated Orco even in the absence of cAMP. Mutation of the five PKC phosphorylation sites in Orco almost completely eliminated sensitivity to cAMP. To test the impact of PKC activity in vivo we combined single sensillum electrophysiological recordings with microinjection of agents affecting PLC and PKC function and observed an altered response of olfactory sensory neurons (OSNs) to odorant stimulation. Injection of the PLC inhibitor U73122 or the PKC inhibitor Gö6976 into sensilla reduced the OSN response to odor pulses. Conversely, injection of the PKC activators OAG, a diacylglycerol analog, or phorbol myristate acetate (PMA) enhanced the odor response. We conclude that metabotropic pathways affecting the phosphorylation state of Orco regulate OR function and thereby shape the OSN odor response
    corecore