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ATP    Adenosine tryphosphate 
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CNQX    6-cyano-7 nitroquinoxaline-2, 3-dione disodium salt 
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GABA    γ-aminobutyric acid 
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KO    Knockout 

µ-    micro,-(x10
-6

)  
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NA    Nucleus ambiguus 
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NH    Nucleus hypoglossus  

NMDA    N-methyl-D-Aspartate 

N-terminal   at the NH2-terminus of a protein 

pA    pico Ampere  
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PBS    Phosphate buffer saline 

PFA    paraformaldehyde  

pH    Negative logarithm of H+- concentration 

PDZ Protein interaction domain, acronym for PSD-95, Dlg, ZO-
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RT    Room temperature 
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1. Introduction 
The central nervous system (CNS) receives and interprets information about internal 

and external environment, makes decisions about the information and organizes and 

carries the actions. The performance of such complex processes results in synapses 

that are specialized intercellular junctions whose specificity and plasticity provide the 

structural and functional basis for the formation and maintenance of the complex 

neuronal network in the brain. The number, location, and type of synapses formed are 

well controlled, since synaptic circuits are formed in a highly reproducible way. This 

implies the existence of cellular and molecular properties that determine the 

connectivity of each neuron in the nervous system. The most common type of a 

synapse in CNS is the chemical synapse. These synapses are composed of pre- and 

postsynaptic sites. Presynaptic site of a synapse includes active zone, where the 

neurotransmitter release occurs, a network of scaffolding proteins (cytomatrix), and 

neurotransmitter containing synaptic vesicles. Postsynaptic site contains 

neurotransmitter receptors directly opposed to the active zone. Pre- and postsynaptic 

sites are separated by extracellular space known as synaptic cleft. Neurotransmitters 

are released in the process called exocytosis, which requires depolarization of the 

presynaptic site, leading to an opening of voltage gated Ca2+-channels and the influx 

of Ca2+-ions into the presynaptic terminal (Zucker et al., 1993; for review Catterall, 

1998). This, in turn leads to fusion of neurotransmitter containing vesicles with the 

plasma membrane and the release of the content into synaptic cleft, thereby 

activating receptors on the postsynaptic membrane. The synapses can be inhibitory 

and excitatory. The excitation is mediated mainly by glutamate receptors, while 

inhibition is mediated by GABA and glycine receptors. 

 

1.1 GABA-ergic neurotransmission 

γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian 

brain. There are two distinct categories of target receptors for GABA, each of which 

mediates synaptic transmission: ionotropic GABAA and GABAC, and metabotropic 

GABAB receptors. GABAA receptors are ligand-gated Cl−-channels that mediate fast 
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inhibitory synaptic transmission in the CNS (Barnard et al., 1998; Mehta & Ticku 

1999; Vicini 1999). These receptors are pentameric complexes formed by the 

heteromeric assembly of five different subunits (Barnard et al., 1998; Sieghart & 

Sperk 2002; Whiting et al., 1999). The brain region-specific distribution and ontogeny- 

dependent expression of these various subunits give rise to a relatively large number 

of GABAA receptor subtypes, which differ in their subunit composition as well as in 

their physiological and pharmacological properties (Sieghart 1995; Sieghart & Sperk 

2002; Whiting et al., 1999). GABAC receptors, like GABAA receptors, are pentameric 

receptor complexes, and are expressed in the retina and in many other regions of the 

CNS (Qian et al., 1994; ENZ et al., 1996, Euler & Wassle 1998; Lukasiewicz et al., 

1998; Shen et al., 2001; Gibbs et al., 2005; Lukasiewicz, 2005). Unlike GABAA 

receptors, GABAB receptors activate second-messenger systems through the binding 

and activation of guanine nucleotide-binding proteins (G proteins), and mediate the 

slow inhibitory neurotransmission of GABA. Dysfunction of GABA-mediated synaptic 

transmission in the CNS is believed to underlie various nervous system disorders, 

which include epilepsy, spasticity, anxiety, stress, sleep disorders, depression, 

addiction, pain, schizophrenia (Couve et al., 2000; Bettler et al., 2004). 
 

1.2 The heteromeric nature of GABAB receptors  

GABAB receptors were first described by Bowery and colleagues in 1981 as 

bicuculline-insensitive, baclofen-sensitive GABA receptors widely expressed in the 

mammalian central nervous system (Hill & Bowery, 1981). Although GABAB receptors 

have been described early on, they were the last major neurotransmitter receptors to 

be cloned (Kaupmann et al., 1997). This was due to the difficulties in coupling of 

GABAB receptors to effector channels in heterologous cells, which prevented 

expression of cloning strategies such as those commonly used for the isolation of 

neurotransmitter receptors. The first GABAB receptor cDNA was eventually isolated 

by using a radioligand-binding screening approach. The cloned GABAB receptor, 

termed GABAB1, has similarity with metabotropic glutamate receptor (mGluRs). It 

posses seven transmembrane domains with large extracelular N- and intracellular C- 
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Figure 1.2: Agonist binding causes a conformational change in the GABAB receptor 
heterodimer resulting in receptor coupling to effector systems. Lobes1 (LB1) and 2 (LB2) 
make up a single protomer in GABAB1 receptor (orange) and GABAB2 receptor subunits 
(green). In the inactivated ‘open’ state, the ligand-binding pocket situated in the GABAB1 
receptor extracellular binding domain is open, and the extracellular and transmembrane (TM) 
domains of GABAB1 receptor and GABAB2 receptor are apart. Agonist binding to GABAB1 
receptor induces ‘closing’ of the ligand-binding pocket and an ‘activated’ receptor state. This 
conformational change results in the extracellular and TM domains of GABAB1 receptor and 
GABAB2 receptor coming closer together (yellow arrows) that leads to activate downstream 
signaling cascades (adapted from Calver et al., 2002). 
 

terminuses. However, GABAB1 was found to bind GABA with low affinity and couple 

with less efficiently to effectors than native GABAB receptors (Kaupmann et al., 1997). 

It was soon established that GABAB1, when expressed alone in heterologous 

systems, could not traffic efficiently to the cell surface, but was rather retained in the 

endoplasmic reticulum (ER) due to the presence of an ER retention motif on its 

intracellular C terminus (Margeta-Mitrovic et al., 2000;  Pagano  et al., 2001). A 

second receptor, GABAB2, was subsequently cloned and found to be capable to traffic 

to the cell surface by itself. When GABAB1 and GABAB2 were co-expressed in 
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heterologous cells, they were found to form functional surface-expressed receptors 

with properties similar to those of some native GABAB receptors (Jones et al., 1998; 

Kaupmann et al., 1998; White et al., 1998). Thus, heterodimerization model has been 

suggested for GABAB receptors. In the heterodimer, GABAB1 binds the ligand (Galvez 

et al., 1999), whereas GABAB2 is believed to be the primary G protein contact site 

(Margeta-Mitrovic et al., 2000; Calver et al., 2001; Galvez et al., 2001, Margeta-

Mitrovic et al., 2001; Pagano et al., 2001; Robbins et al., 2001; Duthey et al., 2002; 

Havlickova et al., 2002). It appears, therefore, that the agonist binds to a component 

of the GABAB1 subunit, producing a conformational change in the protein complex 

that allows GABAB2 to engage and activate the G protein coupled signaling system 

(Figure 1.1). However, the spatial and temporal expression of GABAB1 and GABAB2 

subunits do not always match (Bettler et al., 2004). Therefore, it is possible that 

functional receptors that exist in neurons lack GABAB2. Indeed, some studies suggest 

that GABAB1 subunits can associate into stable homodimers (Villemure et al., 2005). 
 

1.3 Molecular diversity of GABAB receptors 

The cloning of GABAB1 uncovered the existence of two alternatively spliced forms of 

this receptor subunit in human and rodent, GABAB1a and GABAB1b (Kaupmann et al., 

1997). These two isoforms differ in their N-terminus by a pair of ‘Sushi’ domains that 

is present in GABAB1a, but not in GABAB1b (Blein et al., 2004). These domains that are 

involved in protein-protein interactions are found in other GPCR as well (Grace et al., 

2004; Lehtinen et al., 2004). It was suggested that these ‘Sushi’ domains in GABAB1a 

bind to auxiliary proteins that modify receptor activity or pharmacology in vivo 

(Marshall et al., 1999; Mohler & Fritschy, 1999). To note, the two ‘Sushi’ domains in 

GABAB1a exhibit strikingly different structural properties (Blein et al., 2004). Therefore 

it was proposed that they participate in protein interactions with different partners, 

which could generate, at least partially, the heterogeneity of native GABAB receptors. 

Some other splice variants have been also identified for GABAB1 in human and rat 

(Isomoto et al., 1998; Calver et al., 2000; Martin et al., 2001; Pfaff et al., 1999; 

Schwarz et al., 2000).  However, they were not either conserved among different 

species or the existence of stable protein products were not observed in vivo. 
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Although initial reports demonstrated cloning of three alternative splice variants for 

GABAB2, it turned out that these variants do not in fact occur in vivo and they were 

just cloning artifacts (Ng et al., 1999; Martin et al., 2001; Clark et al., 2000). Thus, at 

the moment there is currently no good evidence for splice variants of GABAB2 (Martin 

et al., 2001). 

 

1.4 Distribution and subcellular localization of GABAB receptors 

In central nervous system, GABAB1 and GABAB2 have been found to be colocolized at 

the plasma membrane in agreement with predominantly heteromeric nature of GABAB 

receptors (Kaupmann et al., 1998; Kulik et al., 2002; Lopez-Bendito et al., 2002; Kulik 

et al., 2003; Koyrakh et al., 2005). However, in some brain areas GABAB2 is not 

present, even though the GABAB1 and native receptor are present (Durkin et al., 

1999; Margeta-Mitrovic et al., 1999; Clark et al., 2000). In addition, there is relatively 

less GABAB2 mRNA in the brain compared to GABAB1 (Jones et al., 1998; Clark et al., 

2000). Immunoreactivity of both GABAB receptors was demonstrated in pre- and 

postsynaptic membranes. Presynaptically, GABAB receptors are mainly detected in 

the extrasynaptic membrane and occasionally over the presynaptic membrane 

specialization of glutamatergic and, to a lesser extent, GABAergic terminals. GABAB 

receptors appear to be mostly localized near the active zone, which supports a close 

link with the release machinery. The splice variants of GABAB1, GABAB1a and 

GABAB1b, are differently distributed in the brain (Liang et al., 2000). GABAB1a has 

been found to be localized mainly at presynaptic terminals, whereas GABAB1b is 

located predominantly at postsynaptic terminals (Kaupmann et al., 1998b; Billinton et 

al., 1999; Bischoff et al., 1999; Princivalle et al., 2000; Towers et al., 2000). However, 

some studies revealed the presynaptic localization of GABAB1b, and postsynaptic 

localization of GABAB1a (Benke et al., 1999; Princivalle et al., 2001). During postnatal 

development there is up- and downregulation of both isoforms (Fritschy et al., 2004). 

GABAB1a has been found to be predominantly expressed in neonatal mice with 

overlapping regional distribution with GABAB2, but with profound distinctions in cellular 

and subcellular localizations. GABAB1b is expressed in adult mice, together with 

GABAB2. Studies monitoring functional GABAB responses suggest their presence in 
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peripheral organs (Bowery, 1993). Northern blot and Western blot analysis has 

provided direct evidence for GABAB1 isoforms and GABAB receptors distribution 

throughout the periphery of the rat (Castelli et al., 1999; Calver et al., 2000). However, 

the GABAB2 subunit was not always present with GABAB1, such as in uterus and 

spleen (Calver et al., 2000). GABAB receptors have been found in heart myocytes. 

GABAB1a and GABAB1b show different distribution pattern in the periphery as well. 

Thus, GABAB1a is present in the adrenals, pituitary, spleen, and prostate, whereas 

GABAB1b is found in the rat kidney and liver (Belley et al., 1999). Furthermore, it is 

widely believed that the development of pharmacological agents that selectively 

modify the function of specific pre- and postsynaptic GABAB receptor populations may 

provide beneficial therapies with limited side effect profiles for these ailments. 
 

1.5 Downstream signaling of GABAB receptors 

Effector systems of GABAB receptor signaling are the adenylate cyclase system and 

Ca2+- and K+-ion channels (Hill et al., 1984; Karbon et al., 1984; Hill, 1985; Inoue et 

al., 1985; Andrade et al., 1986; Xu & Wojcik, 1986; Dolphin et al., 1990; Bindokas & 

Ishida, 1991; Gage, 1992; Zhang et al., 1998). Activation of GABAB receptors by its 

agonists causes inhibition of basal and forskolin stimulated adneylyl cyclase activity 

via pertussis toxin-sensitive G proteins, in particular Gαi/o (Odagaki et al., 2000; 

Odagaki & Koyama, 2001). The functional consequences of adenylyl cyclase 

inhibition via GABAB receptors are poorly understood, but reports demonstrate the 

involvement of transcription factors (Steiger et al., 2004) and kinases (Diverse-

Pierluissi et al., 1997; Couve et al., 2002; Ren & Mody, 2003). However, some 

pertussis toxin-insensitive effects of GABAB activation have been described (Noguchi 

& Yamashita, 1999; Cui et al., 2000), particularly the presynaptic GABAB receptors 

are insensitive to pertussis toxin (Harrison et al., 1990). Moreover, it has also been 

found that GABAB activation causes in an increase in guanosine triphosphate (GTP) 

binding in young rats, which was not obtained in older animals, which would suggest 

that there may be a developmental change in the coupling of GABAB receptors and G 

proteins (Moran et al., 2001).  
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Figure 1.4: Activation of GABAB heterodimer leads to activation of heteromeric (αβγ) Gαi/o -
proteins which results in dissociation of Gα from Gβγ subunits. Gαi/o leads to inhibition of 
adenlyly cyclase (AC) activity, which consequently inhibits cAMP.  
 

Other effector systems, such as Ca2+- and K+-channels, have been extensively 

studied by electrophysiological techniques. These studies revealed that GABAB 

receptors modulate these channels both at pre- and postsynaptic sites via the Gβγ 

subunits of G-proteins (Bowery et al., 2002; Calver et al., 2002; Bettler et al., 2004). 

Presynaptic GABAB receptors suppress synaptic transmission via inhibition of voltage 

sensitive Ca2+-channels, (Mintz & Bean, 1993; Thompson et al., 1993; Poncer et al.,  

1997). This effect on Ca2+-channels appears to be primarily associated with 

presynaptic P/Q- and N-type channels (Santos et al., 1995; Lambert & Wilson, 1996; 

Chen & van den Pol, 1998; Takahashi et al., 1998; Bussieres & El Manira, 1999; 

Barral et al., 2000), although facilitation of L-type has also been described (Zhang et 

al. 1998; Shen and Slaughter, 1999). It was also proposed that GABAB receptors are 

directly involved in vesicle priming (Sakaba & Neher, 2003). 
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Figure 1.4: Localization and physiological roles of GABAB receptors. GABAB receptors 
are located on presynaptic, postsynaptic and extrasynaptic membranes. Presynaptic GABAB 
receptors suppress neurotransmitter release by decreasing Ca2+-currents or by a direct 
inhibition of the release machinery. GABAB autoreceptors inhibit the release of GABA, 
whereas GABAB heteroreceptors inhibit the release of glutamate and several other 
neurotransmitters. Some GABAB heteroreceptors are activated by ambient GABA, others 
probably by GABA spillover from inhibitory terminals. Postsynaptic GABAB receptors induce 
sIPSCs by activating K+-channels, which hyperpolarizes the membrane, favors voltage-
sensitive Mg2+ block of NMDA receptors and shunts excitatory currents. GABAB receptors in 
spines and dendritic shafts are activated by spillover of GABA from adjacent terminals during 
population oscillations or during epileptiform activity, which may serve to regulate the 
excitability of the network and to counteract excess excitation. Dendritic GABAB receptors 
inhibit backpropagating action potentials through activation of K+-channels, which may 
influence synaptic plasticity processes and action potential generation at the axon hillock. 
During high-frequency transmission GABA depresses its own release by an action on GABAB 
autoreceptors, which permits sufficient NMDA receptor activation for the induction of LTP 
(adapted form Bettler et al., 2006).  
 
The postsynaptic GABAB receptors activate K+-channels, which in turn hyperpolarize 

the membrane, thus mediating slow postsynaptic currents (sIPSC) and shunts 

excitatory currents (Wagner & Dekin, 1993, 1997; Lüscher et al., 1997; Harayama et 

al., 1998). Recent studies have implicated the role of GABAB receptors in the 

modulation of synaptic plasticity (Davies et al., 1991; Patenaude et al., 2003; Huang 



Introduction 9 

 
 

et al., 2005), heterosynaptic depression (Vogt & Nicoll, 1999), population burst firing 

and inhibition of backpropagating action potentials (Zilberter et al., 1999; Leung & 

Peloquin, 2006). 

 

1.6 Postnatal development of GABAB-ergic inhibition 

GABAB receptors together with GABAA and glicine receptors play crusuial role in 

synaptic inhibition in adult mice. However, the roles of GABA-ergic transmission 

change during postnatal development. GABAA mediated inhibition is not present in 

many brain areas at early stages of development (Ballanyi & Grafe, 1985; Cherubini 

et al., 1991; Hara et al., 1992; Gaiarsa et al., 1995; Ritter & Zhang, 2000). Morever, 

the chloride reversal potential in PBC neurons during the first postnatal week is more 

depolorizing than the resting membrane potential (Ritter & Zhang, 2000). Till the end 

of the first postnatal week, concomidantly with the appearance of chloride mediated 

inhibition, the blockade of GABAA receptors abolishes respiratory rhythm and seizure-

like activity in respiratory network (Brockhaus & Ballanyi, 1998; Ritter & Zhang, 2000). 

Studies have demonstrated that at the very early stage of postnatal development (P0-

P4) GABAB receptor mediated postsynaptic modulation plays an important role in 

PBC, while the GABAB mediated presynaptic modulation developes with longer 

latency and becomes predominant within the first postnatal week (Zhang et al., 2002).  

 

1.7 The structure and function of Ih channels 

Hyperpolarization activated cation currents, or in other term pacemaker currents are 

generated by pacemaker channels that belong to the superfamily of voltage-gated ion 

channels but form a distinct subgroup that is closely related to voltage-independent, 

cyclic nucleotide-gated channels. Because of their activation upon membrane 

hyperpolarization, pacemaker currents were referred as If for “funny current” in the 

heart (Brown et al., 1979), or Iq for “queer current” in the brain (Halliwell et.al., 1982) 

when they were originally discovered. This unique property of pacemaker currents 

gave rise to now widely used name h-current where “h” stands for hyperpolarization. 

Upon hyperolarization, the channels are permeable to both Na+-and K+-ions 

(permeability ratio Na+: K+=0,2-0,4). However, imaging techniques allowed identifying 
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permeability to Ca2+-ions as well (Yu et al., 2004). 

Activation of Ih current is slow, with activation time constants ranging between 

hundreds of milliseconds and seconds. However, in some pyramidal neurons from 

hippocampus, cortex, and cerebellum, activation is complete within tens of 

milliseconds (Frère et al., 2004). Ih, mostly, is extremely sensitive to intracellular 

concentration of cyclic adenosine monophosphate (cAMP). The sensitivity to cyclic 

guanosine monophosphate (cGMP) has been also reported, although to much weaker 

extent (Kaupp et al.; 2001; Robinson et al., 2003). 

Ih current plays an important pacemaker role in controlling cellular excitability. 

For example, in thalamic circuits Ih regulates the periodicity of network oscillations 

generated by thalamic relay neurons (Luthi & McCormick, 1998; Luthi et al., 1998). At 

present, Ih currents are implicated in numerous additional cellular functions that 

include contribution to neuronal resting membrane potentials, presynaptic modulation 

of neurotransmitter release (Pape, 1996; Beaumont &Zucker, 2000; Southan et al., 

2000) and modulation of the dendritic integration of inhibitory and excitatory synaptic 

inputs (Schwindt & Crill, 1997; Magee, 1998; 1999). 

To date, four mammalian HCN subunits have been cloned (from human, rat, 

rabbit and mouse), which have been termed HCN1–4 (Santoro et al., 1997; 1998; 

Ludwig et al., 1998; Seifert et al., 1999; reviewed by Kaupp & Seifert, 2001). HCN 

channels display the membrane topology of voltage gated K+-channels, with six 

transmembrane domains S1-S6 (Figure 1.3). Currents, mediated by HCN1, -2, and -4 

genes in heterologous expression systems have properties typical for Ih, whereas 

HCN3 mediated currents have not been described (Much et al., 2003). Homomeric or 

heteromeris assembly of HCN1, -2 and -4 subunits gives rise to channels that display 

different characteristics. Channels, composed of HCN1 subunits, are activating 

rapidly (tens of milliseconds at voltages bellow 100mV) and are weakly sensitive to 

cAMP. On contrast to HCN1, HCN2- and -4 subunits give rise to channels that are 

slow activating (hundreds of milliseconds at voltages bellow 100mV) and are 

extremely sensitive to cAMP. HCN ion channels are widely expressed on both 

neuronal and nonneuronal cells. HCN1 is predominantly expressed in the cortical, 

hippocampal, and cerebellar regions (Robinson et al., 2003, Santoro et al., 1999; 
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Moosmang et al., 1999, Kaupp et al., 2001). HCN2 and HCN4 are widely expressed 

in regions, where they function as pacemakers (Franz et al., 2000; Monteggia et al., 

2000; Santoro et al., 2000). Thus, the current mediated by these subunits (whether 

expressed alone or in different heteroligomeric combinations or natively) can have 

different properties. 

 

 

  N
C

po r e region

S1 S2 S3 S4 S5 S6

cy c li c-nucleo tid e -bi n d in g

do m ai n

 
 
Figure 1.3: Transmembrane topology of the cloned HCN channels. S1-S6 symbolize the six 
transmembrane-spanning domains of the channels; N- and C-terminus, respectively. The box at the C-
terminus represents the cyclic-nucleotide-binding domain, which is connected to the channel via a C-
linker domain (Wang et al., 2001) that is important in coupling the binding of cyclic nucleotide to the 
alterations in voltage-gating of the channel. The number of amino acids at both termini varies for the 
four HCN subunits. 
 

Many mechanisms that include changes in intracellular levels of cAMP do, therefore, 

modulate Ih channels due to unique property of these channels to be directly gated by 

cAMP (Tokimasa and Akasu, 1990). Thus, neurotransmitters that alter the basal 

activity of adenylyl cyclases, have been shown to modulate Ih (Banks et al., 1993; 

Bobker and Williams, 1989; DiFrancesco and Tromba, 1988). 
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1.8 Aim of the study 

The present study endeavors to gain more insights into the function and downstream 

signaling of GABAB receptors in brainstem respiratory network of neonatal mice.  

As a first step, we have used mutant mice with ablations in the GABAB1 gene (lacking 

GABAB1a and GABAB1b subunits) to see what functional consequences would have 

deletion of GABAB1 in respiratory network of neonatal mice. 

Next, we have addressed a question of downstream signaling of GABAB receptors 

that are negatively coupled to cAMP synthesis by studying the regulation of Ih in 

neonatal mice. In particular, we were interested to find out the pathway or the 

pathways and the responsible molecules involved in such regulation, and whether this 

regulation undergoes changes during postnatal development. 
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2. Materials and Methods 

2.1 Electrophysiology 

2.1.1 Slice preparation 
The preparation of brainstem slices followed the general procedure described in detail 

in Zhang et al. (1999). Briefly, postnatal day 0 (P0) to P11 male or female NMRI 

(Charles River Laboratories, USA) and Balb/c (present from the University of Basel, 

Switzerland)  mice were decapitated at C3-C4 spinal level. The whole brain was 

carefully removed from the skull and was immediately placed in the ice-cold artificial 

cerebrospinal fluid (ACSF, composition described later in this chapter), bubbled with 

carbogen (95% O2 and 5% CO2). The cerebellum and forebrain were removed to 

expose the brainstem. The brainstem was glued with the dorsal ste up by 

Cyanoacrylat (Loctite, Germany) onto the agarblock. The brainstem was sectioned by 

a vibratome slicer (752M Vibroslice, Campden Instruments, UK) from rostral to caudal 

until the nucleus ambiguous (NA) and inferior olive (IO) were seen at the rostral 

boundary of the PBC. Afterwards 200µm slices were cut, transferred into incubation 

chamber, which was superfused by ACSF. A schematic drawing of a slice used for 

recordings is shown in Fig. 2.1. 

 
2.1.2 Electrophysiological Recordings 

For electrophysiological recordings, the slices were placed into the glass bottomed 

recording chamber. To prevent the slices from any dislocation during recordings, they 

were fixed by a platinum wire with a grid of parallel nylon threads. During 

experiments, slices were continuously perfused with extracellular solution by using a 

pump (Watson Marllow,). The slices were visualised by a Axioscope microscope 

(Zeiss, Germany) using a 5x objective. The neuronal bodies of PBC were identified 

under infrared gradient contrast illumination (C2400, Hamamatsu Photonics 

Deutschland GmbH, Herrsching, Germany) with a 40x water immersion objective.  

The recordings were performed using an Axopatsch 200 amplifier (Axon Instrument  
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Figure 2.1: Schematic representation of brainstem slices containing PBC used for 
electrophysiological experiments: Abr. PBC; pre-Bötzinger complex, NA; nucleus ambiguous. 

 
Inc., USA). Recording electrodes (resistance 2-4MΩ) were prepared by pulling 

borosilicate glass micropipettes (GC150-10F, Clark Electromedical Instruments, UK) 

on a multistage puller (P87, Sutter Instrument Co., Novato, USA). Experiments were 

carried out in voltage-clamp mode of whole-cell configuration. Whole cell recording 

configuration can be applied to measure the currents that result from ion movements 

across the membrane. The first step in achieving this configuration is to obtain a high 

resistance contact between the pipette and the cell membrane (gigaseal). The patch 

of membrane under the pipette is ruptured by application of a short pulse of negative 

pressure. The tight seal between pipette glass and cell membrane persists and low 

resistance route for current flow is now into the cell and across entire cell surface 

membrane. In the whole cell-recording pipette solution forms a continuum with the cell 

cytoplasm. Thus the solution filling the patch pipette will enter into and equilibrate with 

the cell interior. The potential on the outside surface is 0 mV (bath potential).  After 

establishing the whole-cell configuration, the holding potential was set at -70mV. 

The membrane currents were filtered by a four-pole Bessel filter set at a corner 

frequency of 1 kHz and digitized at a sampling rate of 5 kHz using a DigiData 1200 

interface (Axon Instrument Inc., USA). Leakage currents were corrected by applying 
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four leakage-subtraction pulses immediately before the main command step and 

subtracting the accumulated calibrating responses from the test responses (P/4 

protocol). The capacitance and resistance was compensated 80 % according to 

manufactures recommendation. All the experiments were conducted at the 35°C. 

 
2.1.3 Capacitance and series resistance calculation 

The passive properties of PBC neurons were estimated by determining membrane 

capacitance and series resistance for each recorded neuron before subsequent 

compensation. Capacitance and series resistance were calculated from the integral of 

the current transients induced by 20 mV hyperpolorarizing voltage commands from a 

holding potential of –70 mV immediately after rupture of the cell membrane according 

to these formulas:  

C=Iτ/20 
Rs= τ/C 

Where C is the capacitance, τ is the decay, I is the current, Rs is the series 
resistance. Cells with series resistance higher than 20MΩ and were not used for data 
analysis. 
 
2.1.4 Ih current and spontaneous postsynaptic current measurements 

Hyperpolarization activated cation currents were evoked by applying hyperpolarizing 

steps of 1500ms from -60 to -120mV. Patch-clamp electrodes were filled with pipette 

solution INLOW (see Solutions). For voltage protocols pClamp 6,0 software (Axon 

Instrument Inc., USA) was used. The measurement and analysis of Ih current will be 

discussed in detail in Results part. Because the total whole cell current is dependant 

on the total number of expressed channels, we estimated current density as a cell 

size independent parameter according to following formula: 

 

I=I1/C 
Where I=current density (pA/pF), I1=whole cell current (pA), and C=capacitance (pF).  
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Spontaneous postsynaptic (sPSC) and spontaneous postsynaptic inhibitory currents 

(sIPSC) were recorded from neurons of preBötzinger complex at about 0mV. 

 

2.1.5 Ventilation Recordings 

Ventilation patterns were recorded by whole-body plethysmography. Briefly, 

unanaesthetized newborn pups were placed in a chamber (15ml), which was closed. 

The chamber was connected to a differential pressure transducer (CD15 Carrier 

Demodulator, ValiDyne). The analog signal of ventilation-related changes of air 

pressure was amplified and digitized using an A/D-converter (DigiData 3200, Axon 

Instruments) and analysed using Clampex 9 (Axon Instruments).  

 

2.1.6 Data acquisition and analysis 

For the data acquisition and analysis pClamp 6,0 software (Axon Instrument Inc., 

USA) was used. Only tests of a single neuron in each slices was used for data 

analysis. Unless stated, data are reported as mean±SEM. Statistical significance was 

evaluated by Students t test (Prism 4 software, Graphpad, USA). 

 

2.1.7 Solutions and drugs used for electrophysiological experiments 

Experiments were carried out in the ASCF containing (in mM): NaCl, 118; KCl, 3; 

CaCl2, 1.5; MgCl2, 1; NaHCO3, 25; NaH2PO4, 1; Glucose 5, equilibrated with 

carbogen at 27-29°C (pH 7.4, Osm. ca. 324). For IH current measurements pipettes 

were filled with INLOW solution containing (mM): KGluconate, 140; CaCl2, 1; EGTA, 

10; MgCl2, 2 Na3ATP, 4; Na3GTP, 0,5; HEPES-KOH, 10 (pH 7.3, osm ca. 310). For 

measurement of synaptic transmission pipettes were filled with INK solution 

containing (in mM): 140; KCl, 1; CaCl2 x 2H2O, 10; EGTA, 2; MgCl2x6H2O, 0,5 

Na2GTP, 4; Na2ATP, 10; HEPES (pH 7,2, osm ca. 310). Potassium D-gluconat, 

Calcium chloride dehydrate, Ethylene glycol-bis (2-aminoethylether)-N,N,N_,N_-

tetraacetic acid, MgCl2x6H2O, Guanosine 5´-triphospate sodium salt hydrate, 

Adenosine 5´-triphospate disodium salt, HEPES, Potassium chloride, Cesium 

chloride, Tetraethylammonium chloride were purchased from Sigma-Aldrich, 
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Germany. Natrium chloride, Natriumhydrogencarbonate, Natrium dihydrogen 

phosphate Monohydrate, Calcium chloride dehydrate, α-D (+)-Glucose Monohydrate 

were purchased from Roth; Germany. Magnesium chloride hexahydrate and 

Potassium chloride were purchased from Sigma-Aldrich, Germany. 

Bellow are listed the pharmacological compounds that were used for 

electrophysiological experiments. 

 
Substance   Concentration  Purchased from 
 
R-Baclofen   5µM, 30µM   Tocris 
CGP55845A   5µM    gift from Novarits 
ZD7288   100µM   Tocris 
Rp-cAMP   10µM    Tocris 
SQ 22,536   200µM   Alexis 
Pertussis toxin (PTX) 0,04µg/ml   Sigma-Aldrich 
Bovine brain Gβγ subunit 20nM    Callbiochem 
SPβγ    200µM   synthesized by SeqLab 
FVII    200µM   synthesized by SeqLab 
CNQX disodium salt 100µM   Tocris 
DL-AP5   10µM    Tocris 
Anti-Gαs antibody  1:10    Santa-Cruz 
Anti-Gi3 antibody  1:10    Santa-Cruz 
 
Peptide sequences were as follows: 
  
SPβγ: DALRIQMEERFMASNPSKVSYEPIT(Ma et al., 1997) 

FVII: YEDSYEDISAYLLSKNNAIPR (Ma et al., 1997)  
 
Peptides were prepared in water and kept at -20°C.  

The above mentioned substances were added from the higher concentrated stock 

solutions either extracellular or intracellular. (R)-Baclofen, ZD7288, Rp-cAMP, SQ 

22,536, CGP55845A, and CNQX were made in H2O. The stock solution of DL-AP5 

was made in NaOH. Pertussis toxin was included in pipette solution. Bovine brain Gβγ 

subunit was aliquoted and kept at -80°C. The effects of different G-protein antibodies, 
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Gβγ subunits and peptides were assessed by introducing them directly into the cell by 

intracellular dialysis from the recording pipette. For all recordings in the presence of 

G-protein antibodies and peptides the tip of recording pipette was filled with to 1-2mm 

with standard recording solution, and the pipette was back-filled with the experimental 

solution. In this way the onset of activation of antibody loading was delayed, which 

permitted the measurement of control responses within the first few minutes of whole 

cell recording. Absence of protein-containing mixtures in the tip of the recording 

pipette facilitated the formation of gigaohm seals and helped prevent clogging of the 

pipette tip after patch rupture. For the antibody experiments intracellular solution was 

modified slightly for its normal composition including 0, 5% bovine serum albumin and 

increasing the concentration of GTP (1mM). 

 

2.2 Fluorescence immunohistochemistry 

2.2.1 Brain tissue preparation  
The tissue for immunohistochemistry was prepared as follows. Postnatal NMRI mice 

were deeply anaesthetized with TBE (tribromethanol) until they were unresponsive to 

painful stimuli. A thoracotomy was perormed and animals were perfused through the 

aorta with 0.9% sodium chloride followed by 100ml 4 % paraformaldehyde in 0.1 M 

phosphate puffer. The whole brain was removed, post-fixed for 1 hour in the same 

fixative at 4 ºC. The tissue was cryoprotected in 30% sucrose overnight at 4 ºC. 

Series of transverse sections of brainstem with a thickness of 14 µm were cut using a 

cryostat (Leica). Each section was quickly placed on the slide. After sectioning the 

slides were kept at -20ºC. 

 
2.2.2 Immunofluorescence staining 

The slices were washed three times for 10 min. with PBS. Non-specific binding sites 

were blocked and permeabilisiation was done by incubating slices in 2% NGS and 0, 

2 % Triton X-100 in phosphate-saline buffer (PBS) for 20-30 min at RT (room 

temperature). Sections were incubated overnight at 4ºC in primary antibody solution 

dissolved in PBS containing 2% NGS and 0,2% Triton X-100. Afterwards the sections 
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were washed 3 times for 10 min. in PBS. Then sections were incubated for 1 Hour at 

RT in the dark with species-specific flurochrome-conjugated secondary antibodies, 

followed by three washing steps for 10 min each. Finally, sections were slightly air-

dried and coverslipped with fluorescent mounting medium (DAKO). Primary antibody 

was rabbit anti GABAB12 subunits (Chemicon). Secondary antibody was goat anti 

rabbit Cy3 antibody (Jackson Immunoresearch). Sections were visualized by confocal 

laser scanning microscopy (Zeiss LSM510). Typically, images (1024x1024 pixel) at a 

zoom factor 4 spaced by 0,38-0,42µm were taken, using a 63xoil-immersion objective 

(A=550, E=570). 

 
2.2.3 Solutions and chemicals 

TBE (tribromethanol) 
1 ml TBE, 4 ml ethanol, 45 ml 0.9% NaCl 
 
PFA 4% (for 1 L) 
80g paraformaldehyde in 0,1 mM PB 
 
PB (phosphate buffer for 2 L) 
Buffer 1: 0.2 M NaH2PO4 (27, 6 g NaH2PO4xH2O) 
Buffer 2: 0.2 M Na2HPO4 (71, 7 g NaH2PO4x12H2O) 
 
PBS (for 1 L) 
10 mM PB; 150 mM NaCl; 2,7mM KCl  
(50 ml PB; 8,77 g NaCl; 200 mg KCl; 900 ml H2O) 
 
NaCl, NaH2PO4xH2O and NaH2PO4x12H2O were purchased form Roth, KCl and NGS 

(normal goat serum), were purchased from Sigma-Aldrich. 
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2.3 GABAB1 knockout mice 

2.3.1 Generation and breeding of GABAB1 knockout mice 

GABAB1
-/- mice were generated by Novartis group (Basel, Switzerland), and 3 pairs 

were generously provided by Prof. Bettler (University of Bassel, Switzerland). Briefly, 

GABAB1 null mutant mice were generated by using Balb/c embryonic stem cells, as 

illustrated in Figure 2.2. In these mice two known GABAB1a and GABAB1b alleles were 

deleted. The breeding was done in our Animal Facility (Center Physiology and 

Pathophysiology, University of Göttingen) by crossing heterozygous GABAB1a/b
+/- 

males with GABAB1a/b
+/- females. The mice were obtained at the predicted Mendelian 

ratio.  

          

     
           

Figure 2.2: Situation of the KO and wild type alleles in the mouse genome. 

 

2.3.2 Diagnostic PCR 

Diagnostic PCR was performed in order to distinguish between wild type GABAB1a/b
+/+, 

heterozygote GABAB1a/b
+/- and homozygote GABAB1a/b

-/- mice. For DNA extraction 

mouse tails were incubated overnight at 55oC with agitation (850 rpm) in eppendorf 

tubes in 0, 5 ml lysis buffer containing Proteinase K. Afterwards eppendorf tubes were 
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centrifuged for 10 minutes at 12’000 rpm (Eppendorf centrifuge). 10 µl of supernatant 

was taken and diluted into 100 ml water. 2µl of the dilluted supernatant was taken and 

used for 25µl PCR reaction. The DNA was amplified in the thermocycle (GeneAmp, 

PCR System 9700, Applied Biosystems, Germany). 

 

The following steps have been chosen: 

1. 93°C 10min 

2. 93°C 30sec 

3. 56°C 45sec 

4. 65°C 2 min  

Repeat the last three steps for 40 times. 

5. 65°C 10 min 

6. 4°C  

 

2.3.3 Solutions and chemicals 

Lysis Buffer (mM) 
 
100 mM Tris-Cl pH 8.5 

5 mM  EDTA pH 8.0,  

200 mM NaCl  

0,2% SDS. 

Proteinase K (Roche, Germany). (It was added just before the digestion to a final 

concentration of 100 mg/ml. Stock solution was made in water and aliquots were kept 

at –20oC). 

 

For PCR reaction the following substances with the final concentration were taken: 

Taq DNA Polymerase 0,05units/µl (Sigma-Aldrich, Germany) 

1xPCR buffer  (delivered together with Taq DNA Polymerase) 

200µM   Deoxynucleotide Mix (Sigma-Aldrich, Germany) 

5OD    primer mix 

H2O 
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Primers were designed by Novartis Group and were synthesized by Applied 

Biosystems (Göttingen).  

To detect WT allele following primers were used: 

Ex10    5’AGC TGA CCA GAC CTT GGT CAT 3’  

Ex11re (21mer) 5'AAC TGG CTT CTC CCT ATG TGG 3’ 

 

To detect KO allele the following primers were used: 

NeoStart  5' ATG GGA TCG GCC ATT GAA CAA 3’  

Ex11re (21mer) 5' AAC TGG CTT CTC CCT ATG TGG 3’ 
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3. Results 

3.1 PBC neurons express GABAB receptors 

First, we tested whether PBC neurons express GABAB receptors. For this reason we 

have used an antibody against GABAB1. Immunofluorescence staining of neonatal 

mice brain sections revealed a widespread GABAB1 staining in pre-Bötzinger 

complex. As illustrated in Figure 3.1, the neurons in pre-Bötzinger complex exhibit 

diffuse somatodedritic staining of GABAB1. 

 

P4  

    
 

Figure 3.1: Expression of GABAB1 receptors In PBC.  Immunofluorescence detection of 
mouse transverse sections by using an antibody against GABAB1a/b. Scale bar, 10µm  
 
3.2 Consequencies of GABAB1 deletion in respiratory network 

3.2.1 Respiration is not affected in GABAB1a/b
-/- KO mice 

In these series of experiments we used a knockout approach to analyze the functional 

consequences of deletion of GABAB1 subunit in vivo. The GABAB1 knockout mice 

were generated, in which the two known GABAB1 subunits, GABAB1a and GABAB1b, 
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were deleted. GABAB1a/b
-/- KO mice were viable. Whole-body plethysmography 

demonstrated that the lack of GABAB1 receptors has no essential role in respiration.  

The representative ventilation traces, presented in Figure 3.2A, obtained from WT 

and GABAB1a/b
-/- KO mice showed no difference in breathing between two genotypes. 

Averaged ventilation frequencies were 3,423±0,2313 Hz (n=6) and 3,376±0,6376 Hz 

(n=3) in WT and in GABAB1a/b
-/- KO mice, respectively (Figure 3.2B). 

 

      
 
Figure 3.2: GABAB1 receptors have no essential role in respiration. A: Representative 
ventilation traces in WT and GABAB1a/b

-/- KO mice. B: Averaged ventilation frequencies in WT 
and GABAB1a/b

-/- KO mice. Numbers within the bar graphs indicate the number of mice tested 
for each genotype. Data are shown as means±SEM.  
 

3.2.2 Synaptic transmission is impaired in GABAB1a/b
-/- KO mice  

Next, we examined whether the lack of GABAB would have any effect in synaptic 

transmission. Therefore we measured spontaneous postsynaptic currents (sPSC) in 

acute brainstem slices containing pre-Bötzinger complex of neonatal mice (P0-P3). 

The synaptic transmission was significantly impaired in GABAB1a/b
-/- mice compared to 

WT mice. In Figure 3.3A are presented representative traces of sPSC obtained from  
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Figure 3.3: Impaired synaptic transmission in GABAB1a/b
-/- KO mice. sPSC were measured 

under whole-cell voltage clamp mode in pre-Bötzinger complex of neonatal mice (P0-P3). A: 
Representative traces of sPCS obtained from WT and GABAB1a/b

-/- KO mice, respectively. B: 
Averaged sPSCs frequency: C: Averaged sPSCs amplitude. Numbers in the bar graphs 
indicate the neuron and mice numbers tested for each genotype, respectively. Statistics was 
done by unpaired student’s t-test. Data are shown as events±SEM. 

 

WT and GABAB1a/b
-/- KO mice. The averaged mean frequency of sPSC was 

5,670±0,1897 Hz in case of WT, whereas it was 3,041±0,1949 Hz in case of 

GABAB1a/b
-/- KO mice (Figure 3.3B). The amplitude of sPSC was also significantly 

affected in GABAB1a/b
-/- KO mice. The averaged amplitude of sPSC was 

93,74±1,98734pA  and 145,3±4,630pA (n=7) in WT and GABAB1a/b
-/- KO mice, 
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respectively (Figure 3.3C). 

 

3.2.3 GABAB mediated responses are lacking in GABAB1a/b
-/- KO mice  

Next we tested whether functional GABAB receptors are present in pre-Bötzinger 

complex of GABAB1a/b
-/- mice. For this reason, we recorded spontaneous inhibitory 

postsynaptic currents (sIPSC) in the presence of ionotropic and metabotropic 

glutamate receptor antagonists (100µM CNQX, 10µM AP5). In these neurons, 

application of baclofen caused the expected marked depression of sIPSC in WT mice. 

However, baclofen was not able to inhibit sIPSC in GABAB1a/b
-/- mice indicating that in 

contrast to WT mice no functional GABAB receptors are operational. In Figure 3.4 A, 

B are shown the representative traces of recordings of sIPSC in WT and In 

GABAB1a/b
-/- mice during subsequent application of 30µM baclofen and 5µM 

CGP55485A, a specific GABAB receptor antagonist. In WT mice baclofen caused an 

inhibition of the frequency of sIPSC from 7,655±0,2185 Hz  to 2,338±0,1268 Hz. In 

these neurons CGP55485A application antagonized the effect of baclofen by 

increasing the frequency to 7,268±0,2022Hz (Figure 3.4C). In case of GABAB1a/b
-/- 

mice the mean frequency of sIPSC was 4,653±0,1200 Hz (Figure 3.4D). After 

baclofen application it remained unchanged and was 4,430±0,1145 Hz. CGP55845A 

application caused a slight increase of the frequency of sIPSC to 5,245±0,1508 Hz. 

Likewise, baclofen caused a significant decrease of the amplitude of sIPSC in WT, 

but not in GABAB1a/b
-/- mice. In Figure 3.4 E, F are shown the summary bar graphs of 

the amplitude of sIPSC obtained from WT and GABAB1a/b
-/- mice, respectively. In 

detail, baclofen caused a decrease of the amplitude from 126,6±2,109pA to 

92,57±2,656pA in WT mice. However, in contrast to the frequency, the amplitude was 

not increased by CGP55845A application in WT mice (87,12±1,612pA). 

In GABAB1a/b
-/- mice the amplitude of sIPSC was 136,2±2,523 pA, and after 

subsequent application of baclofen and CGP55845A it became 127,2±2,294pA and 

126,3±2,566pA, respectively. 
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Figure 3.4: sIPSC measurements of GABAB1a/b

-/- mice: Experiments were performed under 
whole-cell voltage clamp mode in pre-Bötzinger complex: A: Representative traces of sIPSCs 
in WT mouse recorded in the presence of CNQX, AP5, and after subsequent application of 
30µM baclofen and 5µM CGP55845A, respectively. B: Representative traces of sIPSC in 
GABAB1a/b

-/- mouse in the presence of CNQX, AP5 and after subsequent application of 30µM 
baclofen and 5µM CGP55845A respectively. C, D: Summary bar graphs of sIPSC frequency 
during application of baclofen and CGP55845A in WT and GABAB1a/b

-/- mice, respectively: E, 
F: Summary bar graphs of sIPSC amplitude during application of baclofen and CGP55845A 
respectively. Numbers in the bar graphs indicate the cell and mice numbers tested for each 
genotype. Statistics was done by unpaired student’s t-test. Data are shown as events±SEM. 
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3.1.5 The important role of GABAB receptors in the network sensing 
extracellular pH  

To explore the potential role of GABAB receptors in the network sensing extracellular 

pH, we first asked whether changing of extracellular pH will alter synaptic 

transmission in GABAB1a/b
-/- mice. For this reason, we first recorded sPSC in acute 

brainstem slices of GABAB1a/b
-/- mice (P5-P8) superperfused with an extracellular 

solution with pH7,4. Afterwards, the slices were superfused for a minute with an 

extracellular solution with lower pH: pH7,2. Afterwards, sPSC were recorded. In 

Figure 3.5A,B are illustrated the representative sPSC traces obtained from WT and 

GABAB1a/b
-/- mice, respectively. As is seen from the figure, the frequency of sPSC is 

decreased when the extracelluar pH was 7,2 in WT,  but not in GABAB1a/b
-/- mouse. 

The quantification of mean frequency in WT mice were as follows: 7,460±0,2192 Hz 

in control (pH7,4) and 5,536±0,1844 Hz in pH7,2 (n=10/8, p<0,0001, Figure 3.5C). In 

case of GABAB1a/b
-/- mice the mean frequency in control (pH7,4) was 5,633±0,1436 

Hz and 5,952±0,1440 Hz in pH7,2 (n=11/8, n.s; Figure 3.4D). Furthermore, the 

analysis showed a decrease of mean amplitude in both genotypes. In detail, the mean 

amplitude of sPSCs in WT was 119,4±2,938 pA in control and 95,16±2,495 pA in 

pH7,2 (n=10/8, p<0,0001, Figure 3.5E). The mean amplitude of sPSC in  GABAB1a/b
-/- 

mice was 115,4±2,434 pA in control and 98,64±1,932 pA in pH7,2 (n=11/8, p<0,0001, 

Figure 3.5G). 
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Figure 3.5: The role of GABAB receptors in pH sensing:  Experiments were performed under 
whole-cell voltage clamp mode in pre-Bötzinger complex: A; B: Representative traces of 
sPSC obtained from WT and GABAB1a/b

-/- mice in control condition (pH 7,4) and after 
superfusion of the slices in ACSF with lower pH (pH,2). C; D: Summary bar graphs of sPSC 
frequency in control condition and in lower pH obtained from WT and GABAB1a/b

-/- mice, 
respectively: E,F: Summary bar graphs of sPSC amplitude in control condition and in lower 
pH obtained from WT and GABAB1a/b

-/- mice, respectively. Numbers in the bar graphs indicate 
the neuron and the mice numbers, respectively, tested for each genotype. Statistics was done 
by unpaired student’s t-test. Data are shown as events±SEM. 
 

3.2.5 The atypical effects of baclofen in sPSC in low extracellular pH 

Next, we tried to see whether baclofen will affect synaptic transmission in GABAB1a/b
-/- 

mice when the extracellular pH is low (pH 7,2). In Figure 3.6A,B are presented the 

representative traces of sPSC, obtained from WT and GABAB1a/b
-/- mice, respectively. 

Surprisingly, baclofen decreased the frequency in both genotypes, although not to the 

same extent. In contrast to WT mice, application of CGP55845A did not antagonize 

the effect of baclofen in GABAB1a/b
-/- mice. Quantification of mean frequency showed 

that 30µM baclofen almost blocked frequency from 5,300±0,2397 Hz to 0,2967± 

0,07527 Hz (n=7/6, p<0,0001, Figure 3.6C), while 5µM CGP55845A increased the 

frequency to more than control (8,280±0,3478 Hz, n=7/6, p<0,0001) in WT mice. 

Baclofen administration in GABAB1a/b
-/- mice caused an inhibition of frequency from 

3,005±0,1031 Hz to 2,308± 0,1089 Hz (n=6/5, p<0,0001, Figure 3.6D). However, 5µM 

CGP55845A application did not change the frequency (2,283±0,1426 Hz, n=6/5, n.s). 

Quantification of amplitude showed that baclofen does not decrease the amplitude of 

sPSC in low pH in WT mice. The summary of amplitude of WT mice is presented in 

Figure 3.6E. The amplitude was 51,81±0,9004pA in pH7,2, 54,01±3,977pA after 

baclofen and 50,23±0,9337pA after CGP55845A application (n=6/5, n.s.). In case of 

GABAB1a/b
-/- mice the mean amplitude in pH7,2 was 98,61±2,612 pA, after baclofen 

79,60±2,506 pA (n=6/5, p<0,0001) and 77,95±2,538 pA CGP55845A application 

(n=6/5, n.s). 
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Figure 3.6: The effect of baclofen when the extracellular pH is low: Experiments were 
performed under whole-cell voltage clamp mode in pre-Bötzinger complex: A; B: 
Representative traces of sPSCs obtained from WT and GABAB1a/b

-/-  mice after superfusion of 
the slices in ACSF with lower pH7,2, 30µM baclofen, 5µM CGP55845A. C; D: Summary bar 
graphs of sPSCs frequency obtained from WT and GABAB1a/b

-/- mice, respectively: E,F: 
Summary bar graphs of sPSCs amplitude obtained from WT and GABAB1a/b

-/- mice, 
respectively. Numbers in the bar graphs indicate the neuron and the mice numbers, 
respectively, tested for each genotype. Statistics was done by unpaired student’s t-test. Data 
are shown as events±SEM. 
 
 

3.3 Ih  channels in pre-Bötzinger complex 

3.3.1 Identification of Ih current in mouse pre-Bötzinger complex 

The properties of hyperpolarization activated cation current, Ih, were investigated 

under voltage-clamp mode in mouse pre-Bötzinger complex (PBC). The isolation of Ih, 

current from other membrane responses was done by applying hyperpolarization 

voltage step from -60mV to -120mM. The representative trace of Ih current is shown in 

Figure 3.7A. The ‘instantaneous’ current jump (Iinst) was measured immediately 

following the capacitive transient. The ‘steady state’ current (Isteady) was measured at 

the end of 1,5 s hyperpolarizing voltage step. The difference between Isteady-Iinst can 

be defined as Ih current. Applying series of hyperpolarizing voltage steps from -60mV 

to -120mV with 10mV increments allowed to plot Iinst and Isteady against membrane 

potential (Fig 3.7B). Since Ih current was reported to be dependant on bath 

temperature (DiFrancesco and Ojeda, 1980, Watts et al., 1996), we conducted all 

experiments at 35°C. Next, we tested the sensitivity of Ih current to ZD7288, which is 

a commercially available antagonist of Ih channels (Maccaferri and MacBain, 1996). In 

our experiments, bath application of 100 µM ZD7288 caused an inhibition of Ih current 

amplitude (Figure 3.8A). The mean amplitude of Ih current was 315,3±59,39pA (n=19) 

before ZD7288 application and 55,50±21,19 (n=10) after ZD7288 application (n=10, 

p<0,01) (Figure 3.8 B). These experiment shows that ZD7288 blocks Ih current in 

PBC neurons. 
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Figure 3.7: Identification of Ih current in PBC complex.  A. representative current trace evoked 
by hyperpolarizing voltage step from a holding potential of -60mV as indicated. B. IV 
relationship: Instantaneous current, measured at the end of capacitive transient (filled 
triangle), the steady state current, measured at the end of voltage step (filled cycles) and the 
difference between them (empty squares), which is referred to as Ih.  
 

 

 
Figure 3.8: Sensitivity of Ih current ot ZD7288. Ih current was measured under voltage clamp 
by giving hyperpolarizing step of 1,5s duration from the holding potential of -60mV to -120mV 
as indicated. A: Representative traces recorded before and after ZD7288 application. B: 
Mean Ih current amplitude before and after ZD7288 application. Data are expressed as 
Mean±SEM. Numbers in the bar graphs indicate the number of the cells tested.   
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3.3.2 Developmental changes of Ih current in PBC neurons 

To determine whether Ih undergoes changes during early postnatal development in 

PBC, we compared Ih current between two different age groups: P0-P4 and P5-P11. 

The recordings were preformed in PBC neurons under voltage clamp mode by giving 

series of hyperpolarizing steps from the holding potential of -60mV to -120mV. In 

Figure 3.9A are shown the representative traces of Ih current in P0 and P11 old mice. 

It is apparent from the traces that Ih current amplitude is significantly larger in P11 old 

mouse compared to P0 old mouse. Consequently, mean Ih current amplitude, 

presented in Figure 3.9B, was as much larger in older mice as compared to younger 

mice. The mean amplitude of Ih current was only 165,4±21,96pA  in the age group of 

P0-P4 (n=11), while it was 418±23,27pA in the age group of P5-P11 (n=108; 

p<0,005). Further, we characterized mean Ih current density, which was 

3,961±0,5935pA/pF in the age group of P0-P4 (n=11), and 7,297±0,3666 pA/pF 

(n=108, p<0,005) in the age group of P5-P11 (Figure 3.9D). Our results demonstrate 

that both Ih current amplitude and density increase significantly during postnatal 

development. In addition, we found that not only Ih  current amplitude and density 

increase during postnatal development, but also the number of the cells having Ih 

current as shown In Table 3.1. While the number of the cells having Ih current was 

22,66% in the age group of P0-P4, it was significantly more in the age group of P5-

P11 (p<0,01). 
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Figure 3.9: Postnatal changes of Ih current in mouse PBC. Ih current was measured under 
voltage clamp by giving series of hyperpolarizing steps of from the holding potential of -60mV 
to -120mV with 10mV increments as indicated. A: Representative traces of Ih current in P0 
and P11 old mice. B: Averaged mean Ih current amplitude in the age group of P0-P4 and P5-
P11, respectively C: Averaged Ih current density in the   age group of P0-P4 and P5-P11, 
respectively. Data are shown as mean±SEM. Numbers in the bar graphs indicate the number 
of the cells tested.   
 

 
Table 3.1 
    Age   Cells that have Ih current (%) 

  P0-P4            22, 66%±9,458   

  P5-P11           67, 38%±8,398 

Data are expressed as mean±SEM 
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3.4 GABAB modulation of Ih current 
Ih can be modulated by a variety of mechanisms including changes in intracellular 

levels of cAMP (Tokimasa and Akasu, 1990). Neurotransmitters that alter the basal 

activity of adenylyl cyclase, have been shown to modulate Ih (Banks et al., 1993; 

Bobker and Williams, 1989; DiFrancesco and Tromba, 1988). Since GABAB receptors 

are negatively coupled to cAMP activity, we tested whether activation of GABAB 

receptors can modulate Ih in neurons of pre-Bötzinger complex during postnatal 

development. The experiments were performed under voltage clamp mode, and Ih 

currents were evoked by a single hyperpolarization step from the holding potential of -

60mV to -120mV. Detailed analysis showed that when GABAB receptor is activated by 

its selective agonist baclofen, it causes different effects on Ih depending on age. We 

found that in younger mice, age group of P0-P4, baclofen has no effect on Ih. Figure 

3.10A shows example traces of a recorded neuron (P0) superfused with ACSF and 5 

µM baclofen. As is seen from the Figure 3.10A application of 5µM baclofen did not 

have any effect on Ih current amplitude. Averaged current amplitude was 

186,1±27,56pA (n=9) and 173,9±18,50pA (n=9, n.s) after baclofen application (Figure 

3.10B). Indeed, further analysis of Ih current density also showed no effect of baclofen 

on Ih. Averaged mean density was 4,662± 0,8006pA/pF (n=9) and 4,709±0, 8868 

pA/pF (n=9, n.s). This data indicates that GABAB receptor activation in the age group 

of P0-P4 has no effect on Ih. In older mice, age group of P5-P11, GABAB receptor 

activation by baclofen showed biphasic effects on Ih. 40% of the tested neurons 

responded to baclofen with a decrease of Ih current amplitude, while in 60% of the 

tested neurons baclofen increased Ih current amplitude. Figure 3.11A shows an 

example of the effect of baclofen on Ih recorded from a cell of pre-Bötzinger complex 

at the age of P9. Application of 5µM baclofen decreased the amplitude of Ih. IV 

relationship of a neuron shows no change in voltage dependence in control condition 

and after baclofen application (Figure 3.11B). Averaged peak current amplitude was 

reduced from 604, 2± 71,08pA (n=12) to 472, 9±45, 56 pA (n=12, p<0,005) with the 

application of baclofen (Figure 3.11C). Furthermore, baclofen decreased Ih current 

density from 8,696±1,059pA/pF (n=12) to 6,794±0,7616pA/pF (n=12, p<0,005, Figure 

3.11D). 
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Figure 3.10: Activation of GABAB receptors has no effect on Ih: Ih current was elicited by a 
hyperpolarizing step from the holding potential of -60mV to -120mV as indicated. A: 
Representative traces of Ih current before and after GABAB receptor activation by 5 µM 
baclofen administration: B: Mean amplitude of Ih current before and after baclofen application: 
C; Averaged Ih current density before and after baclofen application. Peak amplitude of Ih 
current was divided by cell capacitance to obtain current density. Data are expressed as 
mean±SEM. Numbers in the bar graphs indicate the number of the neurons tested.   
 

The reduction of both, Ih current amplitude and density was considered very 

significant (p<0,005, both cases). As we already mentioned, in majority of the 

recorded neurons application of 5µM baclofen caused an enhancement of the 

amplitude of Ih current. Example traces of a neuron that responded to baclofen with 

an increase of Ih current amplitude are presented in Figure 3.12A. IV relationship of a 

neuron shows no change in voltage dependence in control condition and after 

baclofen application (Figure 3.12).  The mean Ih current amplitude in control was 

572,2± 46,10 pA (n=18), while it was increased to 757,2± 53,42 pA due to baclofen 
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application (n=18, p<0,0001, Figure 3.12C). The current density also increased from 

8,808± 1,062 pA/pF (n=18) to 11,33± 1,363 pA/pF (n=18, p<0,0001, Figure 3.12D).    

 

 

 
 

Figure 3.11: Activation of r GABAB receptors decreases Ih current: Ih current is elicited by a 
hyperpolarization step from the holding potential of -60mV to -120mV as indicated. A: 
Representative traces of Ih current before and after GABAB receptor activation by 5 µM 
baclofen: B: IV relationship, here Ih current is elecited by series of hyperpolarization steps 
from holding potential of -60mV to -120mV with 10mV increments: C; Mean amplitude of Ih 
current before and after baclofen application (p<0,005): D; Averaged Ih current density before 
and after baclofen application. Data are expressed as mean±SEM. Numbers in the bar 
graphs indicate the number of the cells tested.   
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Figure 3.12: Activation of r GABAB receptors increases Ih current: Ih current is evoked by a 
hyperpolarizing step from the holding potential of -60mV to -120mV as indicated. A: 
Representative traces of Ih in control condition and after GABAB receptor activation by 5 µM 
baclofen: B: IV relationship, here Ih current is elicited by series of hyperpolarizing steps from 
the holding potential of -60mV to -120mV with 10mV increments: C; Mean amplitude of Ih 
current in control and after baclofen application (p<0,005): D; Averaged Ih current density in 
control and after baclofen application. Data are expressed as mean±SEM. Numbers in the 
bar graphs indicate the number of the cells tested.   
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Next we tested whether the observed biphasic effects of baclofen on Ih are simply due 

to two different cell populations with different passive properties. For this reason, we 

quantified and compared the cell capacitance between two group of neurons, and 

found that there was no difference in mean capacitance between cell group of 

decrease and the cell group of increase to baclofen application, being 55,42±4,641pF 

(n=12) and 60,43±3,674pF (n=18), respectively (Tabelle 3.2). 

 

Tabele 3.2   

 Neurons with decresing 

response to baclofen 

Neurons with increasing 

response to baclofen 

Cell capacitance                  55,42±4,641pF 60, 43± 3,674pF 

Cell number 12 18 

 

Considering the fact that GABAB receptor activation may lead to activation of other 

membrane conductances, we performed experiments in the continuous presence of Ih 

channel blocker ZD7288. In Figure 3.13A are shown the representative traces of an 

experiment performed in neurons of pre-Bötzinger complex in the age group of P5-

P11 mice. It shows clearly that the remaining Ih current amplitude was almost 

unchanged after baclofen application. The averaged mean of Ih current amplitude was 

55,50±21,19pA in the presence of 100µM ZD7288 (n=6), and after baclofen 

application it was 50,00±40,41 pA (n=6, Figure 3.13). Our results demonstrate that 

GABAB receptors affect only Ih churrents, since when Ih channel is blocked baclofen 

has no effect. 
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Figure 3.13: In the presence of Ih blocker ZD7288 baclofen has no effect on Ih. Ih current is 
evoked by a hyperpolarizing step from the holding potential of -60mV to -120mV as indicated. 
A: Representative traces of Ih in the continuous presence of 100µM ZD7288, and after 
GABAB receptor activation by 5 µM baclofen: B: Mean amplitude of Ih current in the presence 
of ZD7288 and after baclofen application: Data are expressed as mean±SEM. Numbers in the 
bar graphs indicate the number of the cells tested.   
 

 

The biphasic effects of baclofen, described above, were surprising, because it is 

known that GABAB receptors inhibit basal activity of cAMP, which in turn would 

decrease, not increase Ih current amplitude. Taking into account the fact that studies 

suggest the exictance of other GABAB receptors, we proposed an idea that the 

enhancement of Ih mediated by GABAB receptors might be due to another GABAB 

receptor subtype, which in contrast to known GABAB receptor is positively coupled to 

cAMP. To directly test this hypothesis, we used mice with deletions in the GABAB1 

gene (lacking both GABAB1a and GABAB1b subunits). The neurons of pre-Bötzinger 

complex were held at -60mV, and Ih was evoked by giving 1,5s duration 

hyperpolarization step to -120mV. We have compared the data obtained from the wild 

type and GABAB1a/b
-/- knockout mice. The age of animals varied from P6 to P10.  
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Figure 3.14: Ih current measurement in GABAB1a/b knockout mice. Ih was evoked in the 
neurons of pre-Bötzinger complex by applying hyperpolarizing step from the holding potential 
of -60mV to -120mV. A: Representative traces of a cell in wild type (WT) mouse that 
responded to baclofen with decease. B: Averaged Ih current amplitude in WT mouse with 
decrease. C: Representative traces of a cell in WT mouse with an increased response to 
baclofen. D: Average Ih current amplitude in the group of cells with an increased answer. E: 
Representative traces of a cell in GABAB1 knockout mouse in control and after baclofen 
application. F: Averaged Ih current amplitude in KO mice in control and after baclofen 
application. Data are expressed as Means±SEM. The age of animals varied from 6 till 10 
days. Numbers in the bar graphs indicate the number of the neurons tested.   
 
 
However, deletion of GABAB1 gene revealed a complete absence of GABAB response 

in GABAB1a/b
-/- knockout mice. In contrast to GABAB1a/b

-/- knockout mice, in wild type 

mice baclofen application had again biphasic effects on Ih. 25% of the recorded 

neurons in wild type mice showed a reduction of Ih current amplitude, whereas 75% of 

the recoreded neurons showed an enhancement of Ih current amplitude. A, C and E in 

Figure 3.14 show representative traces of Ih current in wild type and GABAB1a/b
-/- 

knockout mice. As is seen from the traces, baclofen administration at the 
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concentration of 5µM causes decrease in one neuron in wild type mouse (A), 

increase in another neuron in wild type mouse (C) and no change in Ih current 

amplitude in GABAB1a/b
-/- knockout mouse. Averaged Ih current amplitude in the group 

of neurons that responded with decrease to baclofen in wild type mice, was 462,5± 

91,27 pA  and 414,2±92,71pA prior to baclofen (n=6, p<0,05, Figure 3.14B). In 

another group of neurons, with an increased response, in WT mice baclofen 

increased the averaged Ih current amplitude from 483,3± 61,69pA (n=18) to 738,9± 

76,29pA (n=18, p<0,0001; Figure 3.14D). In GABAB1a/b
-/- knockout mice averaged Ih 

current amplitude was 527,2±142,4pA (n=9) and 507,2±144,8pA after baclofen 

application (n=9, n.s, Figure 3.14F).  
 

3.5 Mechanism of GABAB modulation of Ih  

To shed light on the mechanism of GABAB modulation of Ih current we next performed 

detailed investigation of cAMP pathway by using specific blockers. 

 
3.5.1 The role of PKA in GABAB mediated modulation of Ih  

      

 
   

 

Schematic representation of GABAB heterodimer and cAMP signaling pathway. In these 
experiments the role of PKA in GABAB mediated Ih modulation was investigated. 
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One of the candidates that might be involved in modulatory effect of baclofen on Ih is 

PKA, since in many cells Ih current had been found to be dependent on channel 

phosphorylation (Accili et al., 1997; Vargas & Lucero, 2002). To directly study if 

phosphorylation of Ih channel is responsible of GABAB mediated modulation of Ih, we 

tested the effects of baclofen in the presence of PKA inhibitor. In 34% of the recorded 

neurons baclofen in the presence of Rp-cAMP, which is a membrane permeable 

inhibitor of PKA did not have any significant effect on Ih. Figure 3.15A shows 

representative traces of a neuron recorded in the pre-Bötzinger complex from the 

holding potential of -60mV to -120mV. Bath application of 200µM Rp-cAMP did not 

decrease the amplitude of Ih, neither did 5µM baclofen application. On average, as is 

shown in Figure 3.15B, Ih current amplitude was 315,0±98,51pA (n=7) in control and  

230,7±51,47pA (n=7) after Rp-cAMP application (n.s). After baclofen application Ih 

amplitude was unchanged: 237,9±49,62pA (n=7, n.s). In 66% of the recorded 

neurons, baclofen significantly increased Ih current amplitude in the presence of Rp-

cAMP. In the Figure 3.15C are shown representative traces of Ih current in control 

condition, after 30 min. superfusion of 200µM Rp-cAMP and after application of 5µM 

baclofen application. However, this population of the neurons in contrast to the 

neuron population described above responded differently to PKA inhibitor application. 

The latter caused a dramatic reduction of Ih current amplitude, and when 5 µM 

baclofen was present in the bath Ih current was increased more than control. On 

average, as is shown in the Figure 3.15D, Rp-cAMP caused an inhibition of Ih current 

from 410,7±46,34pA (n=14) to 259,3±33,07pA (n=14). Baclofen caused almost two 

fold increase of Ih to 511,8±77,38pA (n=14).  
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Figure 3.15: The effect of baclofen on Ih in the presence of PKA inhibitor. Ih was evoked in the 
neurons of pre-Bötzinger complex by giving a single hyperpolarization step from the holding 
potential of -60mV to -120mV. A: Representative traces of a nneuron at the age of P8 
recorded in the absence of any drug (control), after 30 min perfusion of 200µM Rp-cAMP (Rp-
cAMP) and after 5 µM baclofen application (baclofen) (group of neurons that did not respond 
to baclofen). B: Averaged mean Ih current amplitude of the same neuron group. C: 
Representative traces of a recorded neuron at the age of P8 in control, after 30min perfusion 
of 200µM Rp-cAMP (Rp-cAMP) and after 5 µM baclofen application (baclofen) (group of 
neurons that responded to baclofen with an increase of Ih current amplitude). D: Averaged 
mean Ih current amplitude of the same group of neurons. Data are shown as Means±SEM. 
Statistics was done by paired student’s t-test. Numbers in the bar graphs indicate the number 
of the neurons tested.   
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3.5.2 Effect of adenylyl cyclase inhibitor in GABAB mediated  
modulation of Ih  

  

 

 
 
Schematic representation of GABAB heterodimer and cAMP signaling pathway. In these 
experiments the role of adenylyl cyclases (AC) in GABAB mediated Ih modulation was 
investigated. 
 

Next, we investigated whether SQ 22536, a broad-spectrum adenylyl cyclase 

inhibitor, would inhibit the GABAB receptor mediated effects on Ih. Recordings were 

performed in neurons of pre-Bötzinger complex in P5-P8 mice. 40 % of the recorded 

neurons, in the presence of SQ 22536, responded to baclofen application with no 

change in Ih current amplitude. In Figure 3.16A are shown Ih current traces in control, 

and after subsequent application of 500µM SQ 22536 (Ih current was recorded after 

30 min superfusion with SQ 22536) and 5µM baclofen, respectively. SQ 22536 itself 

did not change Ih current amplitude in this group of neurons. The averaged mean Ih 

current amplitude was 470,0±73,16pA in control (n=6), 424,2±62,81pA after 

SQ,22536 application (n=6), and 400,8±65,04pA after baclofen application (n=6). 

Statistical analysis showed no significance between the analyzed groups. However, in 

the 60% of the recorded neurons, baclofen application in the presence of SQ 22536 

enhanced Ih current amplitude. In Figure 3.16C are shown representative traces of Ih 

current in control, and after subsequent application of 500µM SQ 22536 and 5µM 
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Figure 3.16: Effect of GABAB receptors on Ih in the presence of adenylyl cyclase inhibitor: Ih  
current was evoked in the pre-Bötzinger complex by giving 1,5s hyperpolarization step from 
the holding potential of -60mM to -120mV. A: Typical Ih current traces of a recorded neuron in 
control, and after subsequent application of 500µM SQ 22536 and 5µM baclofen, respectively 
(in the group of neurons that did not respond to baclofen). B: Ih current mean amplitude of the 
appropriate group of neurons. C: Typical Ih current traces of a recorded neuron in control, and 
after subsequent application of 500µM SQ 22536 and 5µM baclofen, respectively (in the 
group of neurons that responded to baclofen with an increase of Ih). D: Ih current mean 
amplitude of the appropriate group of neurons. Statistics was done by Student’s paired t-test. 
Data are expressed as Means±SEM. Numbers in the bar graphs indicate the number of the 
neurons tested.  
 
baclofen, respectively. Ih current was changed not only by baclofen application, but 

also by SQ 22536, the effect that we did not observe in the group of neurons 
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mentioned above. In Figure 3.16D are summarized the averaged mean of Ih current 

amplitudes. Application of SQ 22536 decreased Ih current amplitude from 318,9± 

67,77pA (n=9) to 232,8± 65,53 pA (n=9, p<0,1), and application of baclofen caused a 

significant increase of Ih current amplitude to more than control, 386,1±81,09 pA (n=9, 

p<0,01). Our results show, that when adenylyl caclase is inhibited by SQ 22536 

baclofen in one hand has no effect on Ih, on the other hand, baclofen has effect on Ih, 

which suggests that there are adenyly cyclase dependent and independent pathways. 

 

3.5.3 Involvement of PTX-sensitive G proteins in GABAB mediated 
modulation of Ih  

 

 
 

Schematic representation of GABAB heterodimer and cAMP signaling pathway. In these 
experiments the role of PTX-senstitive G-proteins in GABAB mediated Ih modulation was 
investigated. 
 

It is known that some G proteins, Gi, Go, and transducin are ADP-ribosylated by 

pertusis toxin (PTX) and loose their ability to become activated (Ui, 1984). To directly 

test whether GABAB mediated modulation of Ih would be abolished by PTX, we 

performed experiments in which PTX was included in the pipette solution. Ih current 

was measured in mouse pre-Bötzinger complex (P7) after 30 min. of rupturing cell 

membrane by giving a hyperpolarizing step from the holding potential of -60mV to -

120mV.  
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Figure 3.17: Modulation of Ih current by GABAB receptors is mediated via PTX-sensitive and 
insensitive patways. PTX was included in the pipette solution. Ih current was evoked in the 
pre-Bötzinger complex by giving 1,5s hyperpolarization step from the holding potential of -
60mM to -120mV, as indicated. A: Representative Ih current traces of a recorded neuron. B: Ih 
current mean amplitude before and after baclofen application. C: Typical Ih current traces of a 
recorded neuron: D: averaged Ih current amplitude before and after baclofen application. 
Significance was done by Student’s paired t-test. Data are expressed as Means±SEM. 
Numbers in the bar graphs indicate the number of the neurons tested. 
 

Afterwards, baclofen was bath applied at the concentration of 5µM. In our 

experiments the inhibitory effect of baclofen was totally abolished by PTX, whereas 

the increasing effect was still there. In detail, 45 % of the recorded neurons did not 

respond to baclofen. The representative Ih current traces are illustrated in Figure 

3.17A. In this group of the neurons, mean Ih current amplitude was 549,0±129,5pA 



Results 50 

 
 

and 540,0±114,0pA (n=5) after baclofen application (Figure 3.17B). Furthermore, in 

55% of the neurons that did respond, baclofen application increased Ih current 

amplitude from 285,0±55,62pA to 469,2±55,71pA (n=6, p<0,05; Figure 3.17D). 

These data enabled us to conclude that on one hand, the baclofen induced decrease 

of Ih current was mediated via activation of PTX sensitive G proteins, and on the other 

hand baclofen induced increase of Ih current was mediated via PTX insensitive 

pathway. 

 
3.5.4 Effects of dialysis of G-protein antibodies on GABAB-mediated 

modulation of Ih  
 

 
 
Schematic representation of GABAB heterodimer and cAMP signaling pathway. In these 
experiments the role of PTX-senstitive Gαi/o- and Gαs-proteins in GABAB mediated Ih 
modulation was investigated. 
  

In these series of experiments, we tested the effect of baclofen on Ih during dialysis of 

PBC neurons with G-protein antibodies specific for α subunits of Gi3 and Gαs to 

determine which subtype of G-proteins is involved in the coupling of GABAB receptors 

to Ih channels. Responses of a neuron were examined at an early and a late stage of 

recording so that each neuron served as its own control. Intracellular administration of 

anti- Gi3 did not attenuate baclofen mediated enhancement of Ih current (Figure 

3.18A,B). Representative traces, presented in Figure 3.18A, illustrate that 5 µM 
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Figure 3.18: The response to baclofen in neurons dialyzed with specific Gi3- and Gαs-protein 
antibodies. Antibodies were included in pipette solution at 1:10 dillution. Ih current was evoked 
in the pre-Bötzinger complex by giving hyperpolarizing step from the holding potential of -
60mV to -120mV. Ih current was measured immediately after rupturing cell membrane 
(control), after 20min dialysis of an antibody and after baclofen application. A: Typical Ih 
current traces of a neuron with intracellular administration of Gi3 antibody. B: Ih current mean 
amplitude with intracellular administration of Gi3 antibody. C: Typical Ih current traces of a 
recorded neuron with intracellular administration of Gαs antibody: D: Averaged Ih current 
amplitude with intracellular administration of Gi3 antibody. Significance was done by Student’s 
paired t-test. Data are expressed as Means±SEM. The numbers in bar graphs indicate the 
number of the neurons tested. 
 

baclofen application after 20 min intracellular administration of Gi3 antibody was able 

to significantly enhance Ih current amplitude. While averaged Ih current amplitude was 

545,7±80,94pA (n=6), whereas 20min dialysis of the neurons with anti-Gi3 antibody 

significantly reduced Ih current amplitude to 328,3± 64,66pA (n=6, p<0,005), and 

baclofen increased Ih current amplitude to 535,0± 80,86pA (n=6, p<0,05). Strikingly, 



Results 52 

 
 

baclofen application in the presence of intracellular administration of anti-Gαs-protein 

antibody had similar effects on Ih. As is seen from the representative traces of a 

neuron, shown in Figure 3.18C, the enhancing effect of baclofen on Ih was not 

attenuated after 20min dialysis of on a neuron with anti-Gαs-protein antibody. Overall, 

the mean of Ih current amplitude was 505,0±85,26pA (n=10), after 20 min it was 

decreased to 314,0±67,75pA (n=10, p<0,05, Figure 3.18D), and baclofen caused an 

increase to 436,0±86,58pA. Taken together, these results did not really show whether 

α subunits of G-proteins are not involved in GABAB mediated modulation of Ih current 

or not. 
 

3.5.5 Involvement of Gβγ subunits of G-proteins in GABAB mediated 
modulation Ih current  

 

 

 
 
Schematic representation of GABAB heterodimer and cAMP signaling pathway. In these 
experiments the role of Gβγ subunits of G-proteins in GABAB mediated Ih modulation was 
investigated. 

 

In the final series of experiments, we tested the effect of Gβγ subunits in GABAB 

mediated modulation of Ih currents. In this regard, dialysis of neurons with 200µM 

SPβγ, an inhibitory peptide that interferes with binding of Gβγ subunits to several 

targets (Ma et al., 1997), prevented the modulation of Ih currents by baclofen (Figure 
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Figure 3.19: Gβγ is required for the GABAB mediated modulation of Ih currents. Ih current was 
evoked in the pre-Bötzinger complex by giving a hyperpolarizing step from the holding 
potential of -60mV to -120mV. A: Typical Ih current traces of a recorded neuron dialyzed with 
SPβγ, the Gβγ inhibitory peptide. B: Ih current mean amplitude. C: Typical Ih current traces of a 
recorded neuron dialyzed with FVIII, an inactive control of Gβγ: D: Averaged Ih current 
amplitude. E: Typical Ih current traces of a recorded neuron dialyzed with FVIII, an inactive 
control of Gβγ: F: Averaged Ih current amplitude. Significance was done by Student’s paired t-
test. Data are expressed as Means±SEM. The numbers in bar graphs indicate the number of 
the neurons tested. 
 

3.19A), whereas FVIII, which is an inactive peptide, at the concentration of 200µM 

had no effect (Figure 3.19C). Overall, when SPβγ was in pipette solution the mean 

amplitude of Ih current was 555,0±191,3pA, and 594,0±200,8pA after baclofen 

application. As it was expected, when FVIII was included in pipette solution, there 

were biphasic effects prior to baclofen application: decreasing and increasing effects. 

The mean of Ih current amplitude in the first group (decreasing) was 683,8±121,4pA, 

and 517,5±94,41pA after baclofen application (n=6, p<0,05, Figure 3.19C,D). In the 

second group (increasing) baclofen application caused an increase of Ih current 

amplitude from 288,6± 49,31pA to 434,3± 61,21pA (n=7, p<0,001, Figure 3.19E,F). 

If GABAB mediated effects on Ih occurred via Gβγ-dependent mechanism as described 

above, we thought that, after intracellular perfusion with Gβγ subunits, the response of 

the neurons to GABAB receptor activation might be enhanced. However, the effect of 

baclofen on Ih was not enhanced, when the neurons were intracellularly perfused with 

purified bovine brain Gβγ subunit (20nM, Figure 3.20). There were two kinds of 

responses prior to baclofen application: decreasing and increasing response. In the 

first case, baclofen decreased Ih current amplitude from 662,0± 91,55pA to 509,0± 

94,23pA (n=5, p<0,05). In the second case, baclofen caused an increase of Ih current 

amplitude from 317,0± 38,29pA to 455,0± 54,29pA (n=5, p<0,05). 
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Figure 3.20: Intracellular perfusion of Gβγ subunits did not potentate GABAB mediated 
modulation of Ih. Ih current was evoked in the pre-Bötzinger complex by giving a 
hyperpolarizing step from the holding potential of -60mV to -120mV. A: Typical Ih current 
traces of a recorded neuron (that responded to baclofen application with a decrease on Ih) 
dialyzed with Gβγ subunit B: Ih current mean amplitude. C: Typical Ih current traces of a 
recorded neuron (that responded to baclofen application with a decrease on Ih) dialyzed with 
Gβγ subunit: D: Averaged Ih current amplitude. Significance was done by Student’s paired t-
test. Data are expressed as Means±SEM. The numbers in bar graphs indicate the number of 
the neurons tested. 
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Interestingly, when Gβγ subunit was included in pipette solution, baclofen caused a 

significant increase of Iinst-current (non-Ih). To note, Iinst-current is a component of a 

current evoked by applying hyperpolarization voltage step from -60mV to -120mV. Iinst 

was measured immediately following the capacitive transient (for more detail see 

3.3.1 part). In Figure 3.21 are summarized the data of Iinst-current in different 

experiments when different drugs were applied either intracellular or extracellular. 

Baclofen induced a significant increase of Iinst only when intracellular Gβγ subunit was 

present. This observation might be due to activation of K+-currents, since it is known 

that GABAB activates K+-current via Gβγ subunits.   

 
 

 
  

Figure 3.21: Quantification of Iinst current. Iinst current was a component of a current evoked by 
hyperpolarizing voltage step from a holding potential of -60mV to -120mV. Instantaneous 
current was measured at the end of capacitive transient. Bar graphs represent Iinst current. 1st 
bar graph represents a control case (no drug). 2-bar graph represents the response of the 
neurons to baclofen. 3- and 4-bar graphs represent the responses to baclofen when 
extracellular Rp-cAMP and SQ 22536 were present, respectively. 5-, 6-, 7-, 8-, 9,- and 10-bar 
graphs represent the responses to baclofen when PTX, Gi3, Gs, Gβγ, SPβγ and FVIII were 
present ntracellularly in the pipette solution. Students unpaired t-test showed significance only 
between 1 and 8 bar graphs (p<0, 05). The numbers in bar graphs represent tested neurons 
for each experiment. 
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4. Discussion 

GABAB receptors belong to a family of metabotropic receptors mediating slow 

synaptic transmission in central nervous system. It is known that activation of GABAB 

receptors inhibits adenylyl cyclase via the Gαi/o subunits of the activated G-protein in 

adult animals (Hill, 1985). However, little is known about the physiological 

consequences of inhibiting adenylyl cyclase activity via GABAB receptors during 

postnatal development. In this regard, pacemaker channels, or in other term 

hyperoloarization activated cation channels (Ih), are perfect effector system, because 

they had been shown to be directly modulated by cAMP. 

In the present study we first of all extended the analysis of the function of GABAB 

receptors by using GABAB1 null mutant mice. Here we found that 1) the deletion of 

GABAB1 does not cause any failure in respiration, but, indeed, it causes dramatic 

impairment of synaptic transmission, 2) GABAB receptors might be involved in 

sensing extracellular pH. We then explored the signaling of GABAB receptors and 

their regulation of Ih channels in pre-Bötzinger complex during postnatal development. 

We showed that 1) Ih current densitiy and the numbers of the neurons having Ih are 

increasing during postnatal development, 2) GABAB receptors modulate Ih channels in 

relatively older mice (P5-P11), 3), we present a novel, cAMP dependent and 

independent, mechanism by which GABAB receptors modulate Ih.  

 

4.1 Funcional GABAB receptors are present in pre-Bötzinger complex of 
neonatal mice 

GABAB receptors have been shown to be expressed (Lopez-Bendito et al., 2002; 

Ritter et al., 2005) and functional (Zhang et al., 2002) at early stages of development. 

Before the maturation of chloride extrusion mechanisms, the function of GABAA 

receptors is excitatory (Ben-Ari, 2002). At this stage of development, GABAB 

receptors probably are the major inhibitory receptor in the CNS (Gaiarsa et al., 1995; 

McLean et al., 1996; Zhang et al., 2002), so it could be one of the reasons that they 

are expressed at high levels in neonatal animals. Immunofluorescence staining 

performed in this study, indeed, confirmed the previous observation that GABAB 
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receptors are expressed in high levels in the pre-Bötzinger complex of neonatal mice 

(Figure 3.1). Furthermore, the functional analysis of GABAB receptors in neonatal 

mice was extended by using GABAB1 null mutant mice, with ablations of GABAB1a and 

GABAB1b. The phenotype of the GABAB1a/b
-/- mice was mainly similar to that described 

previously (Prosser et al., 2001; Schuler et al., 2001). GABAB1a/b
-/- mice are generated 

in Balb/c background, they are viable, have normal lifespan and show regular 

breathing as demonstrated by whole-body pletismography, which indicates that the 

deletion of GABAB1 receptors is not essential in respiration (Figure 3.2). By contrast, 

GABAB1a/b
-/-

 mice having different genetic background (C57B16/129SvJ) have shorter 

lifespan most likely due to generalized epileptic seizures (Prosser et al., 2001; Quèva 

et al., 2003). Previous studies have shown that deletion of GABAB1 did not cause any 

histopathological alterations in GABAB1a/b
-/-

 mice (Prosser et al., 2001; Schuler et al., 

2001; Quèva et al., 2003). Patch-clamp recordings obtained from the neurons of pre-

Bötzinger complex, revealed a dramatic impairment of synaptic transmission in 

GABAB1a/b
-/-

 mice. While the frequency of spontaneous postsynaptic current (sPSC) 

was significantly reduced in GABAB1a/b
-/-

 mice compared to wild type littermates the 

amplitude of sPSC was increased in GABAB1a/b
-/-

 mice (Figure 3.3). A large body of 

work on native receptors suggests existence of distinct GABAB receptor subtypes 

(Bonanno & Raiteri, 1993; Gemignani et al., 1994; Cunningham & Enna, 1996; Deisz 

et al., 1997; Mohler & Fritschy, 1999; Yamada et al., 1999; Bowery et al., 2002). 

However, the cloned GABAB receptors do not reproduce the pharmacological 

heterogeneity of native GABAB receptors. Thus, to find out the pharmacological 

distinct GABAB receptor would be very important for drug development. In this study, 

we have measured sIPSC after baclofen application and compared the data obtained 

from wild type and GABAB1a/b
-/-

 mice. In contrast to wild type mice, where baclofen 

inhibited the frequency and decreased the amplitude of sIPSC, it affected neither the 

frequency nor the amplitude of sIPSC, which revealed a loss of functional GABAB 

receptors in GABAB1a/b
-/-

 mice (Figure 3.4). These results are in line with other 

observations, where it was shown that GABAB1a/b
-/-

 mice lack detectable GABAB 

responses in all biochemical, electrophysiological and behavioral paradigms studied 

(Prosser et al., 2001; Quèva et al., 2003; Schuler et al., 2001). This demonstrates that 
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most probably all GABAB receptors in the brain incorporate GABAB1 subunit.  

 

4.2 The essential role of GABAB receptors in a network sensing 

extracellular pH 

Central respiratory chemoreception is the mechanism by which the brain senses 

changes in CO2 and/or pH to regulate the rate and depth of breathing (Feldman et al., 

2003). Despite significant progress in identification of candidate brainstem regions 

involved in respiratory chemoreception (Dean et al., 1990; Coates and Nattie, 1993; 

Huang et al., 1997) and of candidate proteins that can impart an intrinsic neuronal pH 

sensitivity, the neuronal and molecular substrates for central respiratory 

chemosensitivity remain largely undefined (Bayliss et al., 2001; Jiang et al., 2001; 

Putnam et al., 2004). In this part of study, we have hypothesized that GABAB 

receptors could also play a role in chemoreception. For this purpose, by using 

GABAB1 null mutant mice, we measured sPSC and compared the data obtained from 

wild type and GABAB1a/b
-/-

 mice in control condition (extracellular pH 7,4) and in lower 

pH (extracellular pH 7,2). In contrast to wild type mice, where the frequency and 

amplitude of sPSC was significantly decreased in lower extracellular pH, in 

GABAB1a/b
-/-

 mice the frequency was unaffected, while the amplitude was significantly 

reduced, indicating that GABAB1 is important for this response (Figure 3.5). Whether 

this observation reflects the direct involvement of GABAB receptors in 

chemoreception, or if this depends on secondary alterations, remains to be studied. 

Nonetheless, our results suggest a putative role of GABAB receptors in a network 

sensing extracellular pH, which may play a significant role in central respiratory 

chemoreception. 

In a final set of experiments, we studied whether baclofen would have any 

“effect” on synaptic transmission in GABAB1 null mutant mice when the extracellular 

pH is low. The measurements have been performed in neurons of pre-Bötzinger 

complex in lower extracellular pH (7,2), and GABAB receptor agonist baclofen and 

antagonist CGP55845A were applied subsequently. In these experiments, baclofen in 

wild type mice inhibited dramatically the frequency of sPSC, leaving the amplitude 

unaffected (Figure 3.6). Strikingly, baclofen caused a decrease in both frequency and 
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amplitude of sPSC in GABAB1a/b
-/-

 mice. However, in contrast to wild type mice, where 

CGP55845A was able to antagonize the effect of baclofen, in GABAB1a/b
-/-

 mice  

CGP55845A was not effective to antagonize neither the decrease of frequency nor 

the amplitude of sPSC.  Considering the fact that CGP55845A was ineffective in 

GABAB1a/b
-/-

 mice, although unlikely, it cannot be excluded that the effects of baclofen 

in synaptic transmission in lower extracellular pH may not be exclusively mediated by 

GABAB receptors. In other studies some G-protein dependent GABAB responses 

have been observed in the GABAB2 deficient, but not in the GABAB1-deficient mice 

(Gassmann et al., 2004). These residual GABAB responses were mediated by 

GABAB1 and caused by the inhibition of a constitutively active K+-channel, (Bettler & 

Tiao, 2006). However, it remains unclear whether the observed atypical GABAB 

responses are of physiological relevance or represent a cloning artifact.  

 

4.3 Identification and developmental changes of Ih current in pre-Bötzinger 
complex 

Ionic currents similar to Ih were found in diverse cell groups in various species 

(DiFranceso 1993; Pape 1996; Frère 2004,). In this study we have characterized Ih in 

pre- Bötzinger complex of neonatal mice, and have presented evidence that this 

current is similar to that observed in other cell types. The unique property of Ih, i.e. 

activation upon hyperpolarization beyond resting membrane potential, made it 

possible to isolate Ih fromother membrane currents. Current, evoked by 

hyperpolarizing test pulse from the holding potential of -60mV, showed an 

instantaneous (non- Ih) and a time dependant current component (Ih) (Figure 3.7). 

Consistent with other studies, Ih current was sensitive to extracellular ZD7288, the 

known antagonist of Ih channels (Figure 3.8). Instantaneous components have been 

recently reported for both recombinant (Macri & Accili, 2004; Proenza & Yellen, 2006) 

and native Ih channels (Day et al. 2005; Rodrigues & Oertel, 2006). However, in 

recombinant channels the instantaneous component appears to be sensitive to  

ZD 7288 as well (Macri & Accili, 2004).  

Developmental changes associated with Ih currents have not yet been 

assessed in pre-Bötzinger complex. To address this question, we have analyzed Ih 
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current in pre-Bötzinger complex during first two weeks of postnatal development (P0-

P11). We have found that both Ih current amplitude and density increases significantly 

after 4 postnatal days (Figure 3.9). Moreover, detailed quantitative analysis showed a 

remarkable increase in the number of the cells having Ih current (23% in the age 

group of P0-P4 and 67% in the age group of P5-P11), which means that the 

expression of Ih channels is increasing during postnatal development. This 

observation was in line with studies, where Ih amplitude increases progressively 

during the first postnatal weeks, consistent with overall increased expression of the Ih 

channel isoforms (Bayliss et al., 1994; Surges et al., 2006). Overall, this data 

demonstrate that neurons in pre-Bötzinger complex, although not all, have Ih current, 

which is increasing significantly during postnatal development. 

 

4.4 GABAB modulates Ih currents 

A key property of neuronal pacemaker channels is their regulation by 

neurotransmitters and hormones acting through the second-messenger cAMP. Since 

GABAB receptors functionally couple to Gαi/o-proteins, we would expect that activation 

of GABAB receptors would decrease the basal activity of adenyly cyclase in the 

neurons of pre-Bötzinger complex, and as a consequence, decrease the intracellular 

cAMP concentration, and ultimately, decrease Ih. To directly test this hypothesis, we 

measured Ih current after activation of GABAB receptors. This was performed during 

first two weeks of postnatal development. Our results demonstrate that GABAB 

receptors modulate Ih current in older (age group of P5-P11), but not in younger mice 

(age group of P0-P4, Figure 3.10). The absence of modulatory effect of GABAB 

receptors in the age group of P0-P4 is most probably due to low expression of HCN 

channels.  

 In older mice (P4-P11) we observed biphasic effects to baclofen, which were 

opposite to each other. In majority of the neurons (60%) baclofen caused an increase, 

while in 40% of the recorded neurons baclofen caused a decrease in Ih current 

amplitude and density (Figure 3.11 and Figure 3.12). This would mean that a basal 

cAMP level can be up- and downregulated in pre-Bötzinger complex, under influence 

of GABAB receptors, which in turn up- and downregulates Ih channels. Reports had 
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been shown that coactivation of GABAB and β-adrenergic receptors in thalamocortical 

neurons  leads to upregulation of Ih current, which was not observed when only 

GABAB receptors were activated (Frère and Luthi, 2004). Authors suggested possible 

involvement of synaptic GABAB receptors that couple positively to cAMP synthesis 

induced by β-adrenergic receptors. Other studies have shown that GABAB receptors 

can also activate LVA Ca2+-channles in pre-Bötzinger complex, which seemed to be 

developmentally regulated, since the enhancment was observed only the first few 

days of postnatal development (Zhang et al., 1999). 

Since many reports on native receptors suggest existence of distinct GABAB receptor 

subtypes (Bonanno & Raiteri, 1993; Gemignani et al., 1994; Cunningham & Enna, 

1996; Deisz et al., 1997; Mohler & Fritschy, 1999; Yamada et al., 1999; Bowery et al., 

2002), we have hypothesized that there might be another GABAB receptor subtype 

apart from the known GABAB receptor, which by contrast, is positively coupled to 

cAMP system. To directly test this hypothesis, we used GABAB1 null mutant mice. 

However, in contrast to wild type mice, deletion of GABAB1 revealed a complete 

absence of GABAB response in GABAB1a/b
-/- knockout mice (3.14). This data, in one 

hand, demonstrated that there is no other additional GABAB1 subunit causing the 

enhancing effects of GABAB receptors, in the other hand, it did confirm that the effects 

of baclofen are mediated exclusively by GABAB1 receptor.  

 

4.5 The mechanism of Ih modulation by GABAB  

Metabotropic receptors, such as GABAB receptors, activate heteromeric (αβγ) G-

proteins by catalyzing replacement by GTP of GDP bound to the α subunit, resulting 

in dissociation of α-GTP from βγ subunits. In most cases, α-GTP carries the signal to 

effectors, as in hormonal stimulation (Birnbaumer, 1990; Kaziro et al., 1991; Bourne 

et al., 1990; Freissmuth et al., 1989) and inhibition of (Wong et al., 1991, 1992) 

adenylyl cyclase by Gαs and Gαi/o respectively. In our study, the observed up- and 

downregulation of Ih channels by GABAB receptors would mean that cAMP synthesis 

is under the influence of two separate signaling pathways, which in turn either up- or 

downregulate Ih channel activity. 

The experiments with PKA inhibitor (Rp-cAMP) demonstrate that cAMP 
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dependent phosphorilation, indeed is an important regulatory pathway of Ih channel 

acitivity mediated by GABAB receptors. In 34% of the recorded neurons the 

responses to baclofen were diminished in the presence of extracellular Rp-cAMP 

(Figure 3.15A, B). Ability of baclofen to modulate Ih current was not surprising, while 

in many other cell types Ih current had been shown to be dependent on channel 

phosphorylation by PKA (Accili et al., 1997; Vargas & Lucero, 2002). However, in 

66% of the recorded neurons the enhancing effect of baclofen on Ih was not occluded 

in the same recording conditions (Figure 3.15C, D). These results indicate that the 

upregulation of Ih channels by GABAB receptors appears to happen at a point 

upstream of PKA. Accordingly, we were able to interfer the down-, but not 

upregulation of Ih channels by GABAB by using SQ22536, an inhibitor of adenylyl 

cyclase. In 40% of the recorded neurons the decreasing effect of baclofen on Ih 

current was absent in the presence of SQ22536 revealing that the downregulation of 

Ih is mediated by adenylyl cyclase pathway (Figure 3.16A, B). However, in 60% of the 

recorded neurons baclofen could still enhance Ih current in the presence of SQ22536, 

suggesting an adneyly cyclase independent signaling pathway (Figure 3.16C, D). 

Interestingly, we found that both Rp-cAMP and SQ22536 themselves significantly 

marked Ih current amplitude in almost 60% of the recorded neurons, which was not 

observed in 40% of the recorded neurons. One interpretation of these data could be 

that the neurons in pre-Bötzinger complex express different combinations of Ih 

channels, which in turn determines the sensitivity to cAMP. 

In this study, by using intracellular pertussis toxin (PTX), we demonstrate that 

baclofen mediated downregulation of Ih channels involves PTX-sensitive G-proteins, 

while baclofen mediated upregulation does not. In 45% of the neurons intracellular 

dialysis with PTX attenuated baclofen mediated decrease of Ih currents (Figure 3.17). 

The ability of PTX to disrupt the coupling of inhibitory receptors to other ion channels 

has already been well documented (Gross et al., 1990). By contrast, in 55% of the 

recorded neurons PTX treatment did not occlude the enhancing effect of baclofen on 

Ih. The possible mechanism of modulation of Ih channels by GABAB receptors as 

shown in the experiments with PTX is the involvement of PTX-sensitive Gαi/o and 

PTX-insensitive Gαs proteins that down- and upregulate Ih channel activity, 
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respectively. In our experiments, baclofen mediated decrease of Ih  current was 

attenuated in neurons dialyzed with the both anti-Gαi3 and anti-Gαs antibodies, while 

the baclofen mediated enhancement of Ih  current was not affected in the same 

experimental conditions (Figure 3.18). Therefore, the results of our experiments in 

neurons dialyzed with specific G-protein antibodies (anti Gαi3 and Gαs) in one hand 

might suggest that both the reduction and enhancement of Ih current by baclofen were 

not mediated by the tested G-proteins. On the other hand we can not exclude the 

possibility that both subunits of G-proteins are involved in the modulation, since it 

might be also possible that our inability to demonstrate any specific effect of either 

antibody on response to baclofen was a consequence of experimental protocol, i.e. 

antibodies were not dialyzed properly or the high concentration of the antibody has 

lead to unspecific effects. Another possibility is the low affinity of these antibodies for 

native Gαi3 and Gαs proteins, which seems unlikely, since biochemical assays in our 

lab (data not published) by using the same G-protein antibodies (anti Gαi3 and Gαs) 

has revealed a coupling of GABAB receptors to both Gαs and Gαi proteins in younger 

mice. 

 The intracellular dialysis of SPβγ peptide (peptide against to Gβγ subunit) 

occluded the effects of baclofen revealing that both increasing and decreasing effects 

of baclofen on Ih occurs through Gβγ subunits (Figure 3.19). This effect seemed to be 

specific, because the inactive peptide (FVIII) could not occlude the both effects of 

baclofen on Ih. The reversal of Gβγ modulation by the SPβγ peptide is an important 

clue and seems to be a primary requirement to the molecular basis of GABAB 

receptor mediated modulatory process on Ih. In addition, intracellular dialysis of 

purified bovine brain Gβγ subunit did not enhance the effect of baclofen in Ih current 

itself, but did increase the Iinst, most probably due to activation of K+-conductance 

(Figure 3.21).  

Previous studies have shown that Gαi/o-coupled receptors, such as µ-opioid 

receptors, unexpectedly couple positively to adenylyl cyclase, thus raising the 

intracellular cAMP concentration (Federman et al., 1992; Uezono et al., 1993; Kaneko 

et al., 1994; Birnbaum et al., 1995; Tsu et al., 1995; Ulens & Tytgat, 2001). This 

unexpected activation of adenylyl cyclase occurs through adenylyl cyclase type II, an 
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isotype that can be activated by Gβγ subunits of any G protein-coupled receptors (thus 

including Gi/o-coupled receptors) provided that Gαs is present (Tang & Gilman, 1991). 

Interestingly, others have shown that Gαi/o-coupled receptors can stimulate adenylyl 

cyclase in native cells as well (Andrade 1993; Gereau & Conn, 1994). These findings 

may account for the observation that Gαi/o-coupled receptors not only fail to inhibit, 

but actually enhance, Gαs-receptor responses, as demonstrated (Andrade 1993; 

Gereau & Conn, 1994; Ulens &Tytgat, 2001).  

However, all these findings show an involvement of adenylyl cyclases, which at 

least partially we did not observe in our experiments. This is the first time to show that 

GABAB receptors are positively coupled to Ih channels by their own, without any 

additional co-factors. However, we can not exclude the possibility that this 

upregulation of Ih channels in PBC happens only in neonatal mice, because these 

experiments were performed during first two weeks of postanatl development. 

Nevertheless, our data offer new insights regarding to the nature of the G-protein-

coupled signaling pathways by which GABAB receptors affect Ih channel activity. The 

upregulation signaling pathway appears to play a dominant role in coupling of GABAB 

receptors to neuronal Ih channels. Here we suggest a new hypothesis about distinct 

signaling pathways of GABAB receptors during postnatal development. Both pathways 

start with activation of GABAB receptors, which leads to dissociation of Gβγ subunits 

from Gα and trigger different signaling pathways. The upregulation occurs 

independently of cAMP pathway, while the downreulation occurs through adenylyl 

cyclase, cAMP, and PKA dependent pathway. Figure 4.1 presents a model of GABAB 

mediated two signaling pathways.  
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Figure 4.1: A model depicting the proposed regulation of Ih channels by GABAB receptors. The binding 
of agonist to GABAB receptors leads to dissociation of α-GTP from βγ subunits. In one modulatory 
pathway GABAB through Gβγ subunits leads to upregulation of Ih channels, independent on cAMP. In 
another modulatory pathway, Gβγ subunits lead to downregulation of Ih channels through adenylyl 
cyclase, cAMP and PKA.  
 
 

4.5 Concluding remarks and future outlook 

At this work we have investigated the function and signaling of GABAB receptors in 

pre-Bötzinger complex. Our data unambiguously showed the involvement of GABAB 

receptors in a neuronal network sensing extracellular pH. However, this observation 

does not really rule out whether GABAB receptors are directly involved in the network. 

In this regard, futher in vivo experiments need to be done.  

 

Our experiments have revelaed that GABAB receptors modulate neuronal Ih channels 

in pre-Bötzinger complex. This modulation seemed to involve distinct signaling 

pathways. The next step would be to examine which HCN channel isoform(s) are the 

targets of GABAB receptors. For example, single-cell PCR and immunohistochemistry 

can be applied to verify the expression of particular HCN isoform(s) in pre-Bötzinger 

complex. From another side, more pharmacological experiments could be done. For 

example, sense and antisense approach could be used to study the involvement of 

different G-proteins in this modulation. Another line of experiment shoud be done to 
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see whether Gβγ subunits are directly involved in the modulation or involve other 

signaling molecules. Moroever, a possible involvement of PKA and PLC also could be 

tested.  
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5. Summary 

The present project investigated the novel aspects of the function and downstream 

signaling of GABAB receptors in the developing brainstem respiratory network of 

mouse.  

The plethysmography studies performed with GABAB1 null mutant mice have shown 

that GABAB receptors are not important for respiration. Remarkably, the deletion of 

GABAB1 causes an impairment of synaptic transmission in brainstem respiratory 

network. One of the crucial aspects in the present study was uncovering an important 

role of GABAB receptors as candidate proteins involved in the neuronal network of 

sensing extracellular pH, which may play a significant role in central respiratory 

chemoreception. In addition, upon GABAB agonist application null mutant mice 

showed atypical electrophysiological GABAB responses when the extracellular pH 

was more acidic (pH 7,2), which was not observed in normal extracellular pH value 

(pH 7,4). However, the present study does not rule out the existence of obligatory 

subunit of GABAB receptors, and it remains to be elucidated whether these responses 

have any physiological relevance.  

 

Whole cell patch-clamp recordings have shown that neurons in brainstem respiratory 

network have Ih currents and that this current density together with the number of the 

cells having Ih current undergoes marked developmental changes during the first two 

postnatal weeks. 

 

Our results demonstrate that there are two distinct signaling pathways by which 

GABAB receptors functionally couple to Ih channels. In one pathway, which appears to 

play a dominant role, GABAB receptor activation causes upregulation of Ih channels 

that requires the Gβγ subunit of activated G-proteins. Importantly this pathway does 

not depend on activity of adenylyl cyclases. By contrast, another pathway by which 

GABAB receptors downregulate Ih channels is dependent on adenyly cyclases, and 

consequently the cAMP and PKA activity. However, it was not possible to determine 

whether or not a distinct subunit of Gα, particularly Gαs and Gαi/o are specifically 

involved in coupling of GABAB receptors to Ih  channels, although the experiments 
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involving PTX suggested the involvement of Gαi/o proteins in GABAB mediated 

downregulation of Ih channels. 
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