31 research outputs found
Reduced switch multilevel inverter topologies for renewable energy sources
This article proposes two generalized multilevel inverter configurations that reduce the number of switching devices, isolated DC sources, and total standing voltage on power switches, making them suitable for renewable energy sources. The main topology is a multilevel inverter that handles two isolated DC sources with ten power switches to create 25 voltage levels. Based on the main proposed topology, two generalized multilevel inverters are introduced to provide flexibility in the design and to minimize the number of elements. The optimal topologies for both extensive multilevel inverters are derived from different design objectives such as minimizing the number of elements (gate drivers, DC sources), achieving a large number of levels, and minimizing the total standing voltage. The main advantages of the proposed topologies are a reduced number of elements compared to those required by other existing multilevel inverter topologies. The power loss analysis and standalone PV application of the proposed topologies are discussed. Experimental results are presented for the proposed topology to demonstrate its correct operation. © 2013 IEEE
Grain growth competition and formation of grain boundaries during solidification of hcp alloys
Grain growth competition during directional solidification of a polycrystal
with hexagonal (hcp) symmetry (Mg-1wt%Gd alloy) is studied by phase-field
modeling, exploring the effect of the temperature gradient G on the resulting
grain boundary (GB) orientation selection. Results show that selection
mechanisms and scaling laws derived for cubic (fcc, bcc) crystals also apply to
hcp materials (within their basal plane), provided a re-estimation of fitting
parameters and re-scaling to account for the sixfold symmetry. While grain
growth competition remains stochastic with rare events of unexpected
elimination or side-branching along the developing GBs, we also confirm an
overall transition from a geometrical limit to a favorably oriented grain limit
behavior with an increase of thermal gradient within the dendritic regime, and
the progressive alignment of dendrites and GBs toward the temperature gradient
direction with an increase of G during the dendritic-to-cellular morphological
transition. Comparisons with original thin-sample directional solidification
experiments show a qualitative agreement with PF results, yet with notable
discrepancies, which nonetheless can be explained based on the stochastic
variability of selected GB orientations, and the statistically limited
experimental sample size. Overall, our results extend the understanding of GB
formation and grain growth competition during solidification of hcp materials,
and the effect of thermal conditions, nonetheless concluding on the challenges
of extending the current studies to three dimensions, and the need for much
broader (statistically significant) data sets of GB orientation selected under
well-identified solidification conditions
A Reduced Single-Phase Switched-Diode Cascaded Multilevel Inverter
The cascaded multilevel inverters (MLIs) are suitable topologies when a high number of voltage levels are needed. Nonetheless, cascaded topologies possess the main drawback of a high number of power switches and gate drivers that make sophisticated control, reducing efficiency, and increasing cost. This article proposes a new fundamental switched-diode topology that is capable of generating five positive-voltage levels with only three power switches, three power diodes, and three dc voltage sources. Based on a combination of the n number of new fundamental topology, two cascaded topologies are proposed, which increases the number of voltage levels and decreases the number of power switches and voltage stress. The proposed cascaded topologies can operate in asymmetric dc sources, so different dc voltage source magnitudes are submitted to minimize the number of components. The main advantages of the proposed cascaded topologies are reducing the number of power switches, and gate drivers with reasonable dc voltage sources count in comparison with other state-of-the-art cascaded topologies. Furthermore, the proposed topologies reduce the cost in comparison with other recent MLI topologies. The power loss analysis and the recommended application for the proposed topologies are discussed. The simulation and experimental works are presented to verify the operation correctness of the proposed topologies
A Switched-DC Source Sub-Module Multilevel Inverter Topology for Renewable Energy Source Applications
This article presents a sub-module topology for switched DC source cascaded multilevel inverter configurations that require fewer switching devices and can generate a high number of voltage levels that are suitable for renewable energy sources. The proposed sub-module topology comprises eight semiconductor switches and four DC voltage sources that generate fifteen voltage levels. Furthermore, the cascaded topology is presented to increase the output voltage levels and to minimize the number of components. The proposed sub-module inverter and its cascaded topology are compared with several multilevel inverters to indicate the advantages and drawbacks of the proposal. The comparison studies show that the proposed topologies require fewer switching devices and gate drivers in comparison with other multilevel inverter topologies. In addition, the proposed cascaded topology reduces the cost of the inverter when compared to other multilevel inverter configurations. Furthermore, the power loss calculations and the implementation of the proposed topology in grid-connected photovoltaic applications are simulated and analyzed. Finally, the performance of the proposal is verified by simulation and experimental results for both symmetric and asymmetric sub-module topologies as well as for the proposed cascaded topology
Ultrafine grained plates of Al-Mg-Si alloy obtained by Incremental Equal Channel Angular Pressing : microstructure and mechanical properties
In this study, an Al-Mg-Si alloy was processed using via Incremental Equal Channel Angular Pressing (I-ECAP) in order to obtain homogenous, ultrafine grained plates with low anisotropy of the mechanical properties. This was the first attempt to process an Al-Mg-Si alloy using this technique. Samples in the form of 3 mm-thick square plates were subjected to I-ECAP with the 90˚ rotation around the axis normal to the surface of the plate between passes. Samples were investigated first in their initial state, then after a single pass of I-ECAP and finally after four such passes. Analyses of the microstructure and mechanical properties demonstrated that the I-ECAP method can be successfully applied in Al-Mg-Si alloys. The average grain size decreased from 15 - 19 µm in the initial state to below 1 µm after four I-ECAP passes. The fraction of high angle grain boundaries in the sample subjected to four I-ECAP passes lay within 53-57 % depending on the examined plane. The mechanism of grain refinement in Al-Mg-Si alloy was found to be distinctly different from that in pure aluminium with the grain rotation being more prominent than the grain subdivision, which was attributed to lower stacking fault energy and the reduced mobility of dislocations in the alloy. The ultimate tensile strength increased more than twice, whereas the yield strength - more than threefold. Additionally, the plates processed by I-ECAP exhibited low anisotropy of mechanical properties (in plane and across the thickness) in comparison to other SPD processing methods, which makes them attractive for further processing and applications