3 research outputs found

    Clinical and molecular features of thiazide-induced hyponatremia

    Get PDF
    Hypertension affects more than 30% of the world’s adult population and thiazide (and thiazide-like) diuretics are amongst the most widely used, effective and least costly treatments available, with all-cause mortality benefits equivalent to ACE inhibitors or calcium channel antagonists. A minority of patients develop Thiazide Induced Hyponatremia (TIH) and this is largely unpredictable at the point of thiazide prescription. In some cases TIH can cause debilitating symptoms and require hospital admission. Although TIH affects only a minority of patients exposed to thiazides, the high prevalence of hypertension leads to TIH being the most common cause of drug-induced hyponatremia requiring hospital admission in the UK. This review examines current clinical and scientific understanding of TIH. Consideration is given to demographic associations, limitations of current electrolyte monitoring regimens, clinical presentation, the phenotype evident on routine clinical blood and urine tests as well as more extensive analyses of blood and urine in research settings, recent genetic associations with TIH and thoughts on management of the condition. Recent genetic and phenotyping analysis has suggested that prostaglandin E2 pathways in the collecting duct may have a role in the development of TIH in a subgroup of patients. Greater understanding of the molecular pathophysiology of TIH raises the prospect of pre-prescription TIH risk profiling and may offer novel insights into how TIH may be avoided, prevented and treated. The rising prevalence of hypertension and the widespread use of thiazides mean that further understanding of TIH will continue to be a pressing issue for patients, physicians and scientists alike for the foreseeable future

    Phenotypic and pharmacogenetic evaluation of patients with thiazide-induced hyponatremia.

    Get PDF
    Thiazide diuretics are among the most widely used treatments for hypertension, but thiazide-induced hyponatremia (TIH), a clinically significant adverse effect, is poorly understood. Here, we have studied the phenotypic and genetic characteristics of patients hospitalized with TIH. In a cohort of 109 TIH patients, those with severe TIH displayed an extended phenotype of intravascular volume expansion, increased free water reabsorption, urinary prostaglandin E2 excretion, and reduced excretion of serum chloride, magnesium, zinc, and antidiuretic hormone. GWAS in a separate cohort of 48 TIH patients and 2,922 controls from the 1958 British birth cohort identified an additional 14 regions associated with TIH. We identified a suggestive association with a variant in SLCO2A1, which encodes a prostaglandin transporter in the distal nephron. Resequencing of SLCO2A1 revealed a nonsynonymous variant, rs34550074 (p.A396T), and association with this SNP was replicated in a second cohort of TIH cases. TIH patients with the p.A396T variant demonstrated increased urinary excretion of prostaglandin E2 and metabolites. Moreover, the SLCO2A1 phospho-mimic p.A396E showed loss of transporter function in vitro. These findings indicate that the phenotype of TIH involves a more extensive metabolic derangement than previously recognized. We propose one mechanism underlying TIH development in a subgroup of patients in which SLCO2A1 regulation is altered.This work was supported by an Academy of Medical Sciences grant for clinical lecturers (to JSW and MG), British Heart Foundation grant PG/09/089 (to KMO), the National Institute for Health Research (NIHR) Royal Brompton Cardiovascular Biomedical Research Unit (to JSW and SC), the Fondation Leducq (to JSW and SC), and the British Heart Foundation (to JSW and SC). MDT holds a Medical Research Council Senior Clinical Fellowship (G0902313). This work was supported by the Medical Research Council (grant numbers G510364 and G1000861). This research used the ALICE and SPECTRE High Performance Computing Facilities at the University of Leicester
    corecore