10 research outputs found

    In situ observations of "cold trap" dehydration in the western tropical Pacific

    No full text
    International audienceWater vapor sonde observations were conducted at Bandung, Indonesia (6.90 S, 107.60 E) and Tarawa, Kiribati (1.35 N, 172.91 E) in December 2003 to examine the efficiency of the "cold trap'' dehydration in the tropical tropopause layer (TTL). Trajectory analysis based on bundles of trajectories suggest that the modification of air parcels' identity due to irreversible mixing by the branching-out and merging-in of nearby trajectories is found to be an important factor, in addition to the routes air parcels are supposed to follow, for interpreting the water vapor concentrations observed by radiosondes in the TTL. Clear correspondence between the observed water vapor concentration and the estimated temperature history of air parcels is found showing that dry air parcels are exposed to low temperatures while humid air parcels do not experience cold conditions during advection, in support of the "cold trap'' hypothesis. It is suggested that the observed air parcel retained the water vapor by roughly twice as much as the minimum saturation mixing ratio after its passage through the "cold trap,'' although appreciable uncertainties remain

    Tropospheric ozone enhancements during the Indonesian Forest Fire Events in 1994 and in 1997 as revealed by ground-based observations

    Get PDF
    Pronounced enhancements of total and tropospheric ozone were observed with the Brewer spectrophotometer and ozonesondes at Watukosek (7.5°S, 112.6°E), Indonesia in 1994 and in 1997 when extensive forest fires were reported in Indonesia. The integrated tropospheric ozone increased from 20 DU to 40 DU in October 1994 and to 55 DU in October 1997. On October 13, 1994, most ozone mixing ratios were more than 50 ppbv throughout the troposphere and exceeded 80 ppbv at some altitudes. On October 22, 1997, the concentrations were more than 50 ppbv throughout the troposphere and exceeded 100 ppbv at several altitudes. The coincidences of the ozone enhancements with the forest fires suggest the photochemical production of tropospheric ozone due to its precursors emitted from the fires for both cases. The years of 1994 and 1997 correspond to El Niño events when convective activity becomes low in Indonesia. Thus, in this region, it is likely that pronounced enhancements of tropospheric ozone associated with extensive forest fires due to sparse precipitation may take place with a period of a few years coinciding with El Niño events. This is in a marked contrast to the situation in South America and Africa where large-scale biomass burnings occur every year

    In situ observations of dehydrated air parcels advected horizontally in the Tropical Tropopause Layer of the western Pacific

    Get PDF
    Water vapor observations by chilled-mirror hygrometers were conducted at Bandung, Indonesia (6.90° S, 107.60° E) and Tarawa, Kiribati (1.35° N, 172.91° E) in December 2003 to examine the efficiency of dehydration during horizontal advection in the tropical tropopause layer (TTL). Trajectory analyses based on bundles of isentropic trajectories suggest that the modification of air parcels' identity due to irreversible mixing by the branching-out and merging-in of nearby trajectories is found to be an important factor, in addition to the routes air parcels follow, for interpreting the water vapor concentrations observed by chilled-mirror frostpoint hygrometers in the TTL. Clear correspondence between the observed water vapor concentration and the estimated temperature history of air parcels is found showing that drier air parcels were exposed to lower temperatures than were more humid ones during advection. Although the number of observations is quite limited, the water content in the observed air parcels on many occasions was more than that expected from the minimum saturation mixing ratio during horizontal advection prior to sonde observations
    corecore