9 research outputs found

    Hard X-Ray Polarization Catalog for a Five-year Sample of Gamma-Ray Bursts Using AstroSat CZT Imager

    Get PDF
    The Cadmium Zinc Telluride Imager (CZTI) on board AstroSat has been regularly detecting gamma-ray bursts (GRBs) since its launch in 2015. Its sensitivity to polarization measurements at energies above 100 keV allows CZTI to attempt spectropolarimetric studies of GRBs. Here, we present the first catalog of GRB polarization measurements made by CZTI during its first five years of operation. This includes the time-integrated polarization measurements of the prompt emission of 20 GRBs in the energy range 100-600 keV. The sample includes the bright GRBs that were detected within an angle range of 0 degrees-60 degrees and 120 degrees-180 degrees where the instrument has useful polarization sensitivity and is less prone to systematics. We implement a few new modifications in the analysis to enhance the polarimetric sensitivity of the instrument. The majority of the GRBs in the sample are found to possess less/null polarization across the total bursts' duration in contrast to a small fraction of five GRBs that exhibit high polarization. The low polarization across the bursts might be due either to the burst being intrinsically weakly polarized or to a varying polarization angle within the burst even when it is highly polarized. In comparison to POLAR measurements, CZTI has detected a larger number of cases with high polarization. This may be a consequence of the higher energy window of CZTI observations, which results in the sampling of a shorter duration of burst emissions than POLAR, thereby probing emissions with less temporal variation in polarization properties

    Fast-transient Searches in Real Time with ZTFReST: Identification of Three Optically Discovered Gamma-Ray Burst Afterglows and New Constraints on the Kilonova Rate

    Get PDF
    The most common way to discover extragalactic fast transients, which fade within a few nights in the optical, is via follow-up of gamma-ray burst and gravitational-wave triggers. However, wide-field surveys have the potential to identify rapidly fading transients independently of such external triggers. The volumetric survey speed of the Zwicky Transient Facility (ZTF) makes it sensitive to objects as faint and fast fading as kilonovae, the optical counterparts to binary neutron star mergers, out to almost 200 Mpc. We introduce an open-source software infrastructure, the ZTF REaltime Search and Triggering, ZTFReST, designed to identify kilonovae and fast transients in ZTF data. Using the ZTF alert stream combined with forced point-spread-function photometry, we have implemented automated candidate ranking based on their photometric evolution and fitting to kilonova models. Automated triggering, with a human in the loop for monitoring, of follow-up systems has also been implemented. In 13 months of science validation, we found several extragalactic fast transients independently of any external trigger, including two supernovae with post-shock cooling emission, two known afterglows with an associated gamma-ray burst (ZTF20abbiixp, ZTF20abwysqy), two known afterglows without any known gamma-ray counterpart (ZTF20aajnksq, ZTF21aaeyldq), and three new fast-declining sources (ZTF20abtxwfx, ZTF20acozryr, ZTF21aagwbjr) that are likely associated with GRB200817A, GRB201103B, and GRB210204A. However, we have not found any objects that appear to be kilonovae. We constrain the rate of GW170817-like kilonovae to R < 900 Gpc-3 yr-1 (95% confidence). A framework such as ZTFReST could become a prime tool for kilonova and fast-transient discovery with the Vera Rubin Observatory

    Daksha: On Alert for High Energy Transients

    Full text link
    We present Daksha, a proposed high energy transients mission for the study of electromagnetic counterparts of gravitational wave sources, and gamma ray bursts. Daksha will comprise of two satellites in low earth equatorial orbits, on opposite sides of earth. Each satellite will carry three types of detectors to cover the entire sky in an energy range from 1 keV to >1 MeV. Any transients detected on-board will be announced publicly within minutes of discovery. All photon data will be downloaded in ground station passes to obtain source positions, spectra, and light curves. In addition, Daksha will address a wide range of science cases including monitoring X-ray pulsars, studies of magnetars, solar flares, searches for fast radio burst counterparts, routine monitoring of bright persistent high energy sources, terrestrial gamma-ray flashes, and probing primordial black hole abundances through lensing. In this paper, we discuss the technical capabilities of Daksha, while the detailed science case is discussed in a separate paper.Comment: 9 pages, 3 figures, 1 table. Additional information about the mission is available at https://www.dakshasat.in

    Science with the Daksha High Energy Transients Mission

    Full text link
    We present the science case for the proposed Daksha high energy transients mission. Daksha will comprise of two satellites covering the entire sky from 1~keV to >1>1~MeV. The primary objectives of the mission are to discover and characterize electromagnetic counterparts to gravitational wave source; and to study Gamma Ray Bursts (GRBs). Daksha is a versatile all-sky monitor that can address a wide variety of science cases. With its broadband spectral response, high sensitivity, and continuous all-sky coverage, it will discover fainter and rarer sources than any other existing or proposed mission. Daksha can make key strides in GRB research with polarization studies, prompt soft spectroscopy, and fine time-resolved spectral studies. Daksha will provide continuous monitoring of X-ray pulsars. It will detect magnetar outbursts and high energy counterparts to Fast Radio Bursts. Using Earth occultation to measure source fluxes, the two satellites together will obtain daily flux measurements of bright hard X-ray sources including active galactic nuclei, X-ray binaries, and slow transients like Novae. Correlation studies between the two satellites can be used to probe primordial black holes through lensing. Daksha will have a set of detectors continuously pointing towards the Sun, providing excellent hard X-ray monitoring data. Closer to home, the high sensitivity and time resolution of Daksha can be leveraged for the characterization of Terrestrial Gamma-ray Flashes.Comment: 19 pages, 7 figures. Submitted to ApJ. More details about the mission at https://www.dakshasat.in

    Test Your Knowledge

    Get PDF
    62-6

    The AstroSat mass model: Imaging and flux studies of off-axis sources with CZTI

    No full text
    International audienceThe Cadmium Zinc Telluride Imager (CZTI) on AstroSat is a hard X-ray coded-aperture mask instrument with a primary field-of-view of 4.6∘×4.6∘4.6^\circ \times 4.6^\circ (FWHM). The instrument collimators become increasingly transparent at energies above ∌\sim 100 keV, making CZTI sensitive to radiation from the entire sky. While this has enabled CZTI to detect a large number of off-axis transient sources, calculating the source flux or spectrum requires knowledge of the direction and energy dependent attenuation of the radiation incident upon the detector. Here, we present a GEANT4-based mass model of CZTI and AstroSat that can be used to simulate the satellite response to the incident radiation, and to calculate an effective “response file” for converting the source counts into fluxes and spectra. We provide details of the geometry and interaction physics, and validate the model by comparing the simulations of imaging and flux studies with observations. Spectroscopic validation of the mass model is discussed in a companion paper, Chattopadhyay et al. (J. Astrophys. Astr., vol. 42 (2021) https://doi.org/10.1007/s12036-021-09718-2)

    Prospects of measuring Gamma-ray Burst Polarisation with the Daksha mission

    Full text link
    The proposed Daksha mission comprises of a pair of highly sensitive space telescopes for detecting and characterising high-energy transients such as electromagnetic counterparts of gravitational wave events and gamma-ray bursts (GRBs). Along with spectral and timing analysis, Daksha can also undertake polarisation studies of these transients, providing data crucial for understanding the source geometry and physical processes governing high-energy emission. Each Daksha satellite will have 340 pixelated Cadmium Zinc Telluride (CZT) detectors arranged in a quasi-hemispherical configuration without any field-of-view collimation (open detectors). These CZT detectors are good polarimeters in the energy range 100 -- 400 keV, and their ability to measure polarisation has been successfully demonstrated by the Cadmium Zinc Telluride Imager (CZTI) onboard AstroSat. Here we demonstrate the hard X-ray polarisation measurement capabilities of Daksha and estimate the polarisation measurement sensitivity (in terms of the Minimum Detectable Polarisation: MDP) using extensive simulations. We find that Daksha will have MDP of~30%30\% for a fluence threshold of 10−410^{-4} erg cm2^2 (in 10 -- 1000 keV). We estimate that with this sensitivity, if GRBs are highly polarised, Daksha can measure the polarisation of about five GRBs per year.Comment: Submitted to Journal of Astronomical Telescopes, Instruments, and Systems (JATIS

    Daksha: On Alert for High Energy Transients

    No full text
    We present Daksha, a proposed high energy transients mission for the study of electromagnetic counterparts of gravitational wave sources, and gamma ray bursts. Daksha will comprise of two satellites in low earth equatorial orbits, on opposite sides of earth. Each satellite will carry three types of detectors to cover the entire sky in an energy range from 1 keV to >1 MeV. Any transients detected on-board will be announced publicly within minutes of discovery. All photon data will be downloaded in ground station passes to obtain source positions, spectra, and light curves. In addition, Daksha will address a wide range of science cases including monitoring X-ray pulsars, studies of magnetars, solar flares, searches for fast radio burst counterparts, routine monitoring of bright persistent high energy sources, terrestrial gamma-ray flashes, and probing primordial black hole abundances through lensing. In this paper, we discuss the technical capabilities of Daksha, while the detailed science case is discussed in a separate paper
    corecore