92 research outputs found

    Clinical Features and Serum Biomarkers in HIV Immune Reconstitution Inflammatory Syndrome after Cryptococcal Meningitis: A Prospective Cohort Study

    Get PDF
    David Boulware and colleagues investigate clinical features in a prospective cohort with AIDS and recent cryptococcal meningitis after initiation of antiretroviral therapy to identify biomarkers for prediction and diagnosis of CM-IRIS (cryptococcal meninigitis-related immune reconstitution inflammatory syndrome)

    Genetic Determinants of Circulating Sphingolipid Concentrations in European Populations

    Get PDF
    Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic beta-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08 x 10(-66). The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1-3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10(-4) or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases

    Artemisone and artemiside - potent pan-reactive antimalarial agents that also synergize redox imbalance in P. falciparum transmissible gametocyte stages

    Get PDF
    The emergence of resistance towards artemisinin combination therapies (ACTs) by the malaria parasite Plasmodium falciparum has the potential to severely compromise malaria control. Therefore, development of new artemisinins in combination with new drugs that impart activities towards both intraerythrocytic proliferative asexual and transmissible gametocyte stages, in particular those of resistant parasites, are urgently required. We define artemisinins as oxidant drugs through their ability to oxidize reduced flavin cofactors of flavin disulfide reductases critical for maintaining redox-homeostasis in the malaria parasite. Here we compare the activities of 10-amino artemisinin derivatives towards the asexual and gametocyte stages of P. falciparum parasites. Of these, artemisone and artemiside inhibited asexual and gametocyte stages, particularly stage V gametocytes in the low nM range. Further, treatment of both early and late gametocyte stages with artemisone or artemiside combined with the pro-oxidant redox partner methylene blue displays notable synergism. These data suggest that modulation of redox-homeostasis likely is an important druggable process, particularly in gametocytes, and thereby enhances the prospect of using combinations of oxidant and redox drugs for malaria control.The South African Medical Research Council (MRC) Flagship Project MALTB-Redox with funds from the National Treasury under its Economic Competitiveness and Support Package to Richard K. Haynes; a South African MRC Strategic Health Innovation Partnership (SHIP) grant, a South African MRC Collaborative Centre for Malaria Research grant, and a South African National Research Foundation grant (UID 84627) to Lyn-Marie Birkholtz; and South African National Research Foundation grants to Richard K. Haynes (UIDs 90682 and 98934). Donatella Taramelli and Sarah D'Alessandro acknowledge the support from the Global Health Program of the Bill & Melinda Gates Foundation (grant OPP1040394 to Donatella Taramelli, Pietro Alano coordinator, and COST Action CM1307).http://aac.asm.org2019-02-01hj2018Biochemistr

    Identification of Novel Proteins in Neospora caninum Using an Organelle Purification and Monoclonal Antibody Approach

    Get PDF
    Neospora caninum is an important veterinary pathogen that causes abortion in cattle and neuromuscular disease in dogs. Neospora has also generated substantial interest because it is an extremely close relative of the human pathogen Toxoplasma gondii, yet does not appear to infect humans. While for Toxoplasma there are a wide array of molecular tools and reagents available for experimental investigation, relatively few reagents exist for Neospora. To investigate the unique biological features of this parasite and exploit the recent sequencing of its genome, we have used an organelle isolation and monoclonal antibody approach to identify novel organellar proteins and develop a wide array of probes for subcellular localization. We raised a panel of forty-six monoclonal antibodies that detect proteins from the rhoptries, micronemes, dense granules, inner membrane complex, apicoplast, mitochondrion and parasite surface. A subset of the proteins was identified by immunoprecipitation and mass spectrometry and reveal that we have identified and localized many of the key proteins involved in invasion and host interaction in Neospora. In addition, we identified novel secretory proteins not previously studied in any apicomplexan parasite. Thus, this organellar monoclonal antibody approach not only greatly enhances the tools available for Neospora cell biology, but also identifies novel components of the unique biological characteristics of this important veterinary pathogen

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Understanding the Return of Genomic Sequencing Results Process: Content Review of Participant Summary Letters in the eMERGE Research Network

    Get PDF
    A challenge in returning genomic test results to research participants is how best to communicate complex and clinically nuanced findings to participants in a manner that is scalable to the large numbers of participants enrolled. The purpose of this study was to examine the features of genetic results letters produced at each Electronic Medical Records and Genomics (eMERGE3) Network site to assess their readability and content. Letters were collected from each site, and a qualitative analysis of letter content and a quantitative analysis of readability statistics were performed. Because letters were produced independently at each eMERGE site, significant heterogeneity in readability and content was found. The content of letters varied widely from a baseline of notifying participants that results existed to more detailed information about positive or negative results, as well as materials for sharing with family members. Most letters were significantly above the Centers for Disease Control-suggested reading level for health communication. While continued effort should be applied to make letters easier to understand, the ongoing challenge of explaining complex genomic information, the implications of negative test results, and the uncertainty that comes with some types of test and result makes simplifying letter text challenging

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    • …
    corecore