50 research outputs found

    G048.66-0.29: physical state of an isolated site of massive star formation

    Get PDF
    We present continuum observations of the infrared dark cloud (IRDC) G48.66-0.22 (G48) obtained with Herschel, Spitzer, and APEX, in addition to several molecular line observations. The Herschel maps are used to derive temperature and column density maps of G48 using a model based on a modified blackbody. We find that G48 has a relatively simple structure and is relatively isolated; thus, this IRDC provides an excellent target to study the collapse and fragmentation of a filamentary structure in the absence of complicating factors such as strong external feedback. The derived temperature structure of G48 is clearly non-isothermal from cloud to core scale. The column density peaks are spatially coincident with the lowest temperatures (~17.5 K) in G48. A total cloud mass of ~390 M ⊙ is derived from the column density maps. By comparing the luminosity-to-mass ratio of 13 point sources detected in the Herschel/PACS bands to evolutionary models, we find that two cores are likely to evolve into high-mass stars (M sstarf >= 8 M ⊙). The derived mean projected separation of point sources is smaller than in other IRDCs but in good agreement with theoretical predications for cylindrical collapse. We detect several molecular species such as CO, HCO+, HCN, HNC, and N2H+. CO is depleted by a factor of ~3.5 compared to the expected interstellar abundance, from which we conclude that CO freezes out in the central region. Furthermore, the molecular clumps, associated with the submillimeter peaks in G48, appear to be gravitationally unbound or just pressure confined. The analysis of critical line masses in G48 shows that the entire filament is collapsing, overcoming any internal support

    Associative Learning of Stimuli Paired and Unpaired With Reinforcement: Evaluating Evidence From Maggots, Flies, Bees, and Rats

    Get PDF
    Finding rewards and avoiding punishments are powerful goals of behavior. To maximize reward and minimize punishment, it is beneficial to learn about the stimuli that predict their occurrence, and decades of research have provided insight into the brain processes underlying such associative reinforcement learning. In addition, it is well known in experimental psychology, yet often unacknowledged in neighboring scientific disciplines, that subjects also learn about the stimuli that predict the absence of reinforcement. Here we evaluate evidence for both these learning processes. We focus on two study cases that both provide a baseline level of behavior against which the effects of associative learning can be assessed. Firstly, we report pertinent evidence from Drosophila larvae. A re-analysis of the literature reveals that through paired presentations of an odor A and a sugar reward (A+) the animals learn that the reward can be found where the odor is, and therefore show an above-baseline preference for the odor. In contrast, through unpaired training (A/+) the animals learn that the reward can be found precisely where the odor is not, and accordingly these larvae show a below-baseline preference for it (the same is the case, with inverted signs, for learning through taste punishment). In addition, we present previously unpublished data demonstrating that also during a two-odor, differential conditioning protocol (A+/B) both these learning processes take place in larvae, i.e., learning about both the rewarded stimulus A and the non-rewarded stimulus B (again, this is likewise the case for differential conditioning with taste punishment). Secondly, after briefly discussing published evidence from adult Drosophila, honeybees, and rats, we report an unpublished data set showing that relative to baseline behavior after truly random presentations of a visual stimulus A and punishment, rats exhibit memories of opposite valence upon paired and unpaired training. Collectively, the evidence conforms to classical findings in experimental psychology and suggests that across species animals associatively learn both through paired and through unpaired presentations of stimuli with reinforcement – with opposite valence. While the brain mechanisms of unpaired learning for the most part still need to be uncovered, the immediate implication is that using unpaired procedures as a mnemonically neutral control for associative reinforcement learning may be leading analyses astray

    The Earliest Phases of Star Formation (EPoS): A Herschel Key Program - The precursors to high-mass stars and clusters

    Get PDF
    (Abridged) We present an overview of the sample of high-mass star and cluster forming regions observed as part of the Earliest Phases of Star Formation (EPoS) Herschel Guaranteed Time Key Program. A sample of 45 infrared-dark clouds (IRDCs) were mapped at PACS 70, 100, and 160 micron and SPIRE 250, 350, and 500 micron. In this paper, we characterize a population of cores which appear in the PACS bands and place them into context with their host cloud and investigate their evolutionary stage. We construct spectral energy distributions (SEDs) of 496 cores which appear in all PACS bands, 34% of which lack counterparts at 24 micron. From single-temperature modified blackbody fits of the SEDs, we derive the temperature, luminosity, and mass of each core. These properties predominantly reflect the conditions in the cold, outer regions. Taking into account optical depth effects and performing simple radiative transfer models, we explore the origin of emission at PACS wavelengths. The core population has a median temperature of 20K and has masses and luminosities that span four to five orders of magnitude. Cores with a counterpart at 24 micron are warmer and bluer on average than cores without a 24 micron counterpart. We conclude that cores bright at 24 micron are on average more advanced in their evolution, where a central protostar(s) have heated the outer bulk of the core, than 24 micron-dark cores. The 24 micron emission itself can arise in instances where our line of sight aligns with an exposed part of the warm inner core. About 10% of the total cloud mass is found in a given cloud's core population. We uncover over 300 further candidate cores which are dark until 100 micron. These are candidate starless objects, and further observations will help us determine the nature of these very cold cores.Comment: Accepted for publication in A&A, 81 pages, 68 figures. For full resolution image gallery (Appendix B), see http://www.mpia.de/~ragan/epos.htm

    Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by microfluidic control over reciprocal cell signaling

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in B. Bachmann et. al., Biomicrofluidics 12, 042216 (2018) and may be found at https://doi.org/10.1063/1.5027054

    Social capital, social inclusion and changing school contexts: a Scottish perspective

    Get PDF
    This paper synthesises a collaborative review of social capital theory, with particular regard for its relevance to the changing educational landscape within Scotland. The review considers the common and distinctive elements of social capital, developed by the founding fathers – Putnam, Bourdieu and Coleman – and explores how these might help to understand the changing contexts and pursue opportunities for growth

    Beyond outputs: pathways to symmetrical evaluations of university sustainable development partnerships

    Get PDF
    As the United Nations Decade of Education for Sustainable Development (2005–2014) draws to a close, it is timely to review ways in which the sustainable development initiatives of higher education institutions have been, and can be, evaluated. In their efforts to document and assess collaborative sustainable development program outcomes and impacts, universities in the North and South are challenged by similar conundrums that confront development agencies. This article explores pathways to symmetrical evaluations of transnationally partnered research, curricula, and public-outreach initiatives specifically devoted to sustainable development. Drawing on extensive literature and informed by international development experience, the authors present a novel framework for evaluating transnational higher education partnerships devoted to sustainable development that addresses design, management, capacity building, and institutional outreach. The framework is applied by assessing several full-term African higher education evaluation case studies with a view toward identifying key limitations and suggesting useful future symmetrical evaluation pathways. University participants in transnational sustainable development initiatives, and their supporting donors, would be well-served by utilizing an inclusive evaluation framework that is infused with principles of symmetry

    Sex differences in mate preferences across 45 countries: A large-scale replication

    Get PDF
    Considerable research has examined human mate preferences across cultures, finding universal sex differences in preferences for attractiveness and resources as well as sources of systematic cultural variation. Two competing perspectives—an evolutionary psychological perspective and a biosocial role perspective—offer alternative explanations for these findings. However, the original data on which each perspective relies are decades old, and the literature is fraught with conflicting methods, analyses, results, and conclusions. Using a new 45-country sample (N = 14,399), we attempted to replicate classic studies and test both the evolutionary and biosocial role perspectives. Support for universal sex differences in preferences remains robust: Men, more than women, prefer attractive, young mates, and women, more than men, prefer older mates with financial prospects. Cross-culturally, both sexes have mates closer to their own ages as gender equality increases. Beyond age of partner, neither pathogen prevalence nor gender equality robustly predicted sex differences or preferences across countries

    Associative learning of stimuli paired and unpaired with reinforcement: Evaluating evidence from maggots, flies, bees, and rats

    No full text
    Finding rewards and avoiding punishments are powerful goals of behavior. To maximize reward and minimize punishment, it is beneficial to learn about the stimuli that predict their occurrence, and decades of research have provided insight into the brain processes underlying such associative reinforcement learning. In addition, it is well known in experimental psychology, yet often unacknowledged in neighboring scientific disciplines, that subjects also learn about the stimuli that predict the absence of reinforcement. Here we evaluate evidence for both these learning processes. We focus on two study cases that both provide a baseline level of behavior against which the effects of associative learning can be assessed. Firstly, we report pertinent evidence from Drosophila larvae. A re-analysis of the literature reveals that through paired presentations of an odor A and a sugar reward (A+) the animals learn that the reward can be found where the odor is, and therefore show an above-baseline preference for the odor. In contrast, through unpaired training (A/+) the animals learn that the reward can be found precisely where the odor is not, and accordingly these larvae show a below-baseline preference for it (the same is the case, with inverted signs, for learning through taste punishment). In addition, we present previously unpublished data demonstrating that also during a two-odor, differential conditioning protocol (A+/B) both these learning processes take place in larvae, i.e., learning about both the rewarded stimulus A and the non-rewarded stimulus B (again, this is likewise the case for differential conditioning with taste punishment). Secondly, after briefly discussing published evidence from adult Drosophila, honeybees, and rats, we report an unpublished data set showing that relative to baseline behavior after truly random presentations of a visual stimulus A and punishment, rats exhibit memories of opposite valence upon paired and unpaired training. Collectively, the evidence conforms to classical findings in experimental psychology and suggests that across species animals associatively learn both through paired and through unpaired presentations of stimuli with reinforcement - with opposite valence. While the brain mechanisms of unpaired learning for the most part still need to be uncovered, the immediate implication is that using unpaired procedures as a mnemonically neutral control for associative reinforcement learning may be leading analyses astray
    corecore