81 research outputs found

    Influenza vaccination coverage among an urban pediatric asthma population: Implications for population health

    Get PDF
    Introduction Asthma is the most common chronic disease in children. Children with asthma are at high risk for complications from influenza; however annual influenza vaccination rates for this population are suboptimal. The overall aim of this study was to describe the characteristics of a high-risk population of children with asthma presenting to an urban pediatric emergency department according to influenza vaccination status. Methods The study was a retrospective chart review of 4355 patients aged 2 to 18 years evaluated in a Michigan pediatric emergency department (PED) between November 1, 2017 and April 30, 2018 with an ICD-10-CM code for asthma (J45.x). Eligible patient PED records were matched with influenza vaccination records for the 2017–2018 influenza season from the Michigan Care Improvement Registry. Geospatial analysis was employed to examine the distribution of influenza vaccination status. Results 1049 patients (30.9%) with asthma seen in the PED had received an influenza vaccine. Influenza vaccination coverage varied by Census Tract, ranging from 10% to \u3e 99%. Most vaccines were administered in a primary care setting (84.3%) and were covered by public insurance (76.8%). The influenza vaccination rate was lowest for children aged 5–11 years (30.0%) and vaccination status was associated with race (p\u3c0.001) and insurance type (p\u3c0.001). Conclusions Identification of neighborhood Census Tract and demographic groups with suboptimal influenza vaccination could guide development of targeted public health interventions to improve vaccination rates in high-risk patients. Given the morbidity and mortality associated with pediatric asthma, a data-driven approach may improve outcomes and reduce healthcare-associated costs for this pediatric population

    How well does neonatal neuroimaging correlate with neurodevelopmental outcomes in infants with hypoxic-ischemic encephalopathy?

    Get PDF
    BACKGROUND: In newborns with hypoxic-ischemic encephalopathy (HIE), the correlation between neonatal neuroimaging and the degree of neurodevelopmental impairment (NDI) is unclear. METHODS: Infants with HIE enrolled in a randomized controlled trial underwent neonatal MRI/MR spectroscopy (MRS) using a harmonized protocol at 4-6 days of age. The severity of brain injury was measured with a validated scoring system. Using proportional odds regression, we calculated adjusted odds ratios (aOR) for the associations between MRI/MRS measures of injury and primary ordinal outcome (i.e., normal, mild NDI, moderate NDI, severe NDI, or death) at age 2 years. RESULTS: Of 451 infants with MRI/MRS at a median age of 5 days (IQR 4.5-5.8), outcomes were normal (51%); mild (12%), moderate (14%), severe NDI (13%); or death (9%). MRI injury score (aOR 1.06, 95% CI 1.05, 1.07), severe brain injury (aOR 39.6, 95% CI 16.4, 95.6), and MRS lactate/n-acetylaspartate (NAA) ratio (aOR 1.6, 95% CI 1.4,1.8) were associated with worse primary outcomes. Infants with mild/moderate MRI brain injury had similar BSID-III cognitive, language, and motor scores as infants with no injury. CONCLUSION: In the absence of severe injury, brain MRI/MRS does not accurately discriminate the degree of NDI. Given diagnostic uncertainty, families need to be counseled regarding a range of possible neurodevelopmental outcomes. IMPACT: Half of all infants with hypoxic-ischemic encephalopathy (HIE) enrolled in a large clinical trial either died or had neurodevelopmental impairment at age 2 years despite receiving therapeutic hypothermia. Severe brain injury and a global pattern of brain injury on MRI were both strongly associated with death or neurodevelopmental impairment. Infants with mild or moderate brain injury had similar mean BSID-III cognitive, language, and motor scores as infants with no brain injury on MRI. Given the prognostic uncertainty of brain MRI among infants with less severe degrees of brain injury, families should be counseled regarding a range of possible neurodevelopmental outcomes

    Identification of Tuberculosis Susceptibility Genes with Human Macrophage Gene Expression Profiles

    Get PDF
    Although host genetics influences susceptibility to tuberculosis (TB), few genes determining disease outcome have been identified. We hypothesized that macrophages from individuals with different clinical manifestations of Mycobacterium tuberculosis (Mtb) infection would have distinct gene expression profiles and that polymorphisms in these genes may also be associated with susceptibility to TB. We measured gene expression levels of >38,500 genes from ex vivo Mtb-stimulated macrophages in 12 subjects with 3 clinical phenotypes: latent, pulmonary, and meningeal TB (n = 4 per group). After identifying differentially expressed genes, we confirmed these results in 34 additional subjects by real-time PCR. We also used a case-control study design to examine whether polymorphisms in differentially regulated genes were associated with susceptibility to these different clinical forms of TB. We compared gene expression profiles in Mtb-stimulated and unstimulated macrophages and identified 1,608 and 199 genes that were differentially expressed by >2- and >5-fold, respectively. In an independent sample set of 34 individuals and a subset of highly regulated genes, 90% of the microarray results were confirmed by RT-PCR, including expression levels of CCL1, which distinguished the 3 clinical groups. Furthermore, 6 single nucleotide polymorphisms (SNPs) in CCL1 were found to be associated with TB in a case-control genetic association study with 273 TB cases and 188 controls. To our knowledge, this is the first identification of CCL1 as a gene involved in host susceptibility to TB and the first study to combine microarray and DNA polymorphism studies to identify genes associated with TB susceptibility. These results suggest that genome-wide studies can provide an unbiased method to identify critical macrophage response genes that are associated with different clinical outcomes and that variation in innate immune response genes regulate susceptibility to TB

    Genome Scan of M. tuberculosis Infection and Disease in Ugandans

    Get PDF
    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is an enduring public health problem globally, particularly in sub-Saharan Africa. Several studies have suggested a role for host genetic susceptibility in increased risk for TB but results across studies have been equivocal. As part of a household contact study of Mtb infection and disease in Kampala, Uganda, we have taken a unique approach to the study of genetic susceptibility to TB, by studying three phenotypes. First, we analyzed culture confirmed TB disease compared to latent Mtb infection (LTBI) or lack of Mtb infection. Second, we analyzed resistance to Mtb infection in the face of continuous exposure, defined by a persistently negative tuberculin skin test (PTST-); this outcome was contrasted to LTBI. Third, we analyzed an intermediate phenotype, tumor necrosis factor-alpha (TNFα) expression in response to soluble Mtb ligands enriched with molecules secreted from Mtb (culture filtrate). We conducted a full microsatellite genome scan, using genotypes generated by the Center for Medical Genetics at Marshfield. Multipoint model-free linkage analysis was conducted using an extension of the Haseman-Elston regression model that includes half sibling pairs, and HIV status was included as a covariate in the model. The analysis included 803 individuals from 193 pedigrees, comprising 258 full sibling pairs and 175 half sibling pairs. Suggestive linkage (p<10−3) was observed on chromosomes 2q21-2q24 and 5p13-5q22 for PTST-, and on chromosome 7p22-7p21 for TB; these findings for PTST- are novel and the chromosome 7 region contains the IL6 gene. In addition, we replicated recent linkage findings on chromosome 20q13 for TB (p = 0.002). We also observed linkage at the nominal α = 0.05 threshold to a number of promising candidate genes, SLC11A1 (PTST- p = 0.02), IL-1 complex (TB p = 0.01), IL12BR2 (TNFα p = 0.006), IL12A (TB p = 0.02) and IFNGR2 (TNFα p = 0.002). These results confirm not only that genetic factors influence the interaction between humans and Mtb but more importantly that they differ according to the outcome of that interaction: exposure but no infection, infection without progression to disease, or progression of infection to disease. Many of the genetic factors for each of these stages are part of the innate immune system

    Maternal High Fat Diet Is Associated with Decreased Plasma n–3 Fatty Acids and Fetal Hepatic Apoptosis in Nonhuman Primates

    Get PDF
    To begin to understand the contributions of maternal obesity and over-nutrition to human development and the early origins of obesity, we utilized a non-human primate model to investigate the effects of maternal high-fat feeding and obesity on breast milk, maternal and fetal plasma fatty acid composition and fetal hepatic development. While the high-fat diet (HFD) contained equivalent levels of n-3 fatty acids (FA's) and higher levels of n-6 FA's than the control diet (CTR), we found significant decreases in docosahexaenoic acid (DHA) and total n-3 FA's in HFD maternal and fetal plasma. Furthermore, the HFD fetal plasma n-6∶n-3 ratio was elevated and was significantly correlated to the maternal plasma n-6∶n-3 ratio and maternal hyperinsulinemia. Hepatic apoptosis was also increased in the HFD fetal liver. Switching HFD females to a CTR diet during a subsequent pregnancy normalized fetal DHA, n-3 FA's and fetal hepatic apoptosis to CTR levels. Breast milk from HFD dams contained lower levels of eicosopentanoic acid (EPA) and DHA and lower levels of total protein than CTR breast milk. This study links chronic maternal consumption of a HFD with fetal hepatic apoptosis and suggests that a potentially pathological maternal fatty acid milieu is replicated in the developing fetal circulation in the nonhuman primate

    The use of race, ethnicity and ancestry in human genetic research

    Get PDF
    Post-Human Genome Project progress has enabled a new wave of population genetic research, and intensified controversy over the use of race/ethnicity in this work. At the same time, the development of methods for inferring genetic ancestry offers more empirical means of assigning group labels. Here, we provide a systematic analysis of the use of race/ethnicity and ancestry in current genetic research. We base our analysis on key published recommendations for the use and reporting of race/ethnicity which advise that researchers: explain why the terms/categories were used and how they were measured, carefully define them, and apply them consistently. We studied 170 population genetic research articles from high impact journals, published 2008–2009. A comparative perspective was obtained by aligning study metrics with similar research from articles published 2001–2004. Our analysis indicates a marked improvement in compliance with some of the recommendations/guidelines for the use of race/ethnicity over time, while showing that important shortfalls still remain: no article using ‘race’, ‘ethnicity’ or ‘ancestry’ defined or discussed the meaning of these concepts in context; a third of articles still do not provide a rationale for their use, with those using ‘ancestry’ being the least likely to do so. Further, no article discussed potential socio-ethical implications of the reported research. As such, there remains a clear imperative for highlighting the importance of consistent and comprehensive reporting on human populations to the genetics/genomics community globally, to generate explicit guidelines for the uses of ancestry and genetic ancestry, and importantly, to ensure that guidelines are followed

    Opportunities for understanding the COVID-19 pandemic and child health in the United States: the Environmental influences on Child Health Outcomes (ECHO) program

    Get PDF
    Objective Ongoing pediatric cohort studies offer opportunities to investigate the impact of the COVID-19 pandemic on children's health. With well-characterized data from tens of thousands of US children, the Environmental influences on Child Health Outcomes (ECHO) Program offers such an opportunity. Methods ECHO enrolled children and their caregivers from community- and clinic-based pediatric cohort studies. Extant data from each of the cohorts were pooled and harmonized. In 2019, cohorts began collecting data under a common protocol, and data collection is ongoing with a focus on early life environmental exposures and five child health domains: birth outcomes, neurodevelopment, obesity, respiratory, and positive health. In April of 2020, ECHO began collecting a questionnaire designed to assess COVID-19 infection and the pandemic's impact on families. We describe and summarize the characteristics of children who participated in the ECHO Program during the COVID-19 pandemic and novel opportunities for scientific advancement. Results This sample (n = 13,725) was diverse by child age (31% early childhood, 41% middle childhood, and 16% adolescence up to age 21), sex (49% female), race (64% White, 15% Black, 3% Asian, 2% American Indian or Alaska Native, <1% Native Hawaiian or Pacific Islander, 10% Multiple race and 2% Other race), Hispanic ethnicity (22% Hispanic), and were similarly distributed across the four United States Census regions and Puerto Rico. Conclusion ECHO data collected during the pandemic can be used to conduct solution-oriented research to inform the development of programs and policies to support child health during the pandemic and in the post-pandemic era
    corecore