199 research outputs found

    Feeding Immunity: Physiological and Behavioral Responses to Infection and Resource Limitation.

    Get PDF
    Resources are a core currency of species interactions and ecology in general (e.g., think of food webs or competition). Within parasite-infected hosts, resources are divided among the competing demands of host immunity and growth as well as parasite reproduction and growth. Effects of resources on immune responses are increasingly understood at the cellular level (e.g., metabolic predictors of effector function), but there has been limited consideration of how these effects scale up to affect individual energetic regimes (e.g., allocation trade-offs), susceptibility to infection, and feeding behavior (e.g., responses to local resource quality and quantity). We experimentally rewilded laboratory mice (strain C57BL/6) in semi-natural enclosures to investigate the effects of dietary protein and gastrointestinal nematode (Trichuris muris) infection on individual-level immunity, activity, and behavior. The scale and realism of this field experiment, as well as the multiple physiological assays developed for laboratory mice, enabled us to detect costs, trade-offs, and potential compensatory mechanisms that mice employ to battle infection under different resource conditions. We found that mice on a low-protein diet spent more time feeding, which led to higher body fat stores (i.e., concentration of a satiety hormone, leptin) and altered metabolite profiles, but which did not fully compensate for the effects of poor nutrition on albumin or immune defenses. Specifically, immune defenses measured as interleukin 13 (IL13) (a primary cytokine coordinating defense against T. muris) and as T. muris-specific IgG1 titers were lower in mice on the low-protein diet. However, these reduced defenses did not result in higher worm counts in mice with poorer diets. The lab mice, living outside for the first time in thousands of generations, also consumed at least 26 wild plant species occurring in the enclosures, and DNA metabarcoding revealed that the consumption of different wild foods may be associated with differences in leptin concentrations. When individual foraging behavior was accounted for, worm infection significantly reduced rates of host weight gain. Housing laboratory mice in outdoor enclosures provided new insights into the resource costs of immune defense to helminth infection and how hosts modify their behavior to compensate for those costs

    Former Ă  l’écrit universitaire, un terrain pour la linguistique ?

    Get PDF
    Introduction Les recherches sur les littĂ©racies universitaires reprĂ©sentent aujourd’hui Ă  l’échelle internationale un champ foisonnant. Sur le terrain, la tradition des Writing Centers des universitĂ©s amĂ©ricaines sert d’exemple et la formation Ă  l’écrit se dĂ©veloppe fortement dans les universitĂ©s : formation Ă  la maĂźtrise des diffĂ©rents genres universitaires ; formation aux genres de l’écrit professionnel, dans le cadre de la professionnalisation des Ă©tudes universitaires ; et formation Ă  une..

    Former Ă  l’écrit universitaire, un terrain pour la linguistique ?

    Get PDF
    Introduction Les recherches sur les littĂ©racies universitaires reprĂ©sentent aujourd’hui Ă  l’échelle internationale un champ foisonnant. Sur le terrain, la tradition des Writing Centers des universitĂ©s amĂ©ricaines sert d’exemple et la formation Ă  l’écrit se dĂ©veloppe fortement dans les universitĂ©s : formation Ă  la maĂźtrise des diffĂ©rents genres universitaires ; formation aux genres de l’écrit professionnel, dans le cadre de la professionnalisation des Ă©tudes universitaires ; et formation Ă  une..

    Interpreting ELISA analyses from wild animal samples: some recurrent issues and solutions

    Get PDF
    Many studies in disease and ecological immunology rely on the use of assays that quantify the amount of specific antibodies (immunoglobulin) in samples. Enzyme‐linked immunosorbent assays (ELISAs) are increasingly used in ecology due to their availability for a broad array of antigens and the limited amount of sampling material they require. Two recurrent methodological issues are nevertheless faced by researchers: (1) the limited availability of immunological assays and reagents developed for non‐model species, and (2) the statistical determination of the cut‐off threshold used to distinguish individual samples that are likely to have or not to have antibodies against a specific antigen. Here, we outline two solutions to deal with these issues. First, we show that implementing two assays with differing detection methods can help validate the use of reagents, such as antibodies, in species different from their intended target. We illustrate this by comparing the quantification of specific vaccinal antibodies against Newcastle disease virus (NDV) using two ELISA approaches in four seabird species (Cory's shearwater, European shag, European storm petrel and Southern rockhopper penguin). Second, we provide a simple way to determine from the distribution of ELISA values whether the assayed samples are likely to be made of a single group of individuals (likely negative) or of two groups of individuals (negative and positive). We illustrate the use of this approach with two independent datasets: NDV antibody levels following vaccination and anti‐Borrelia antibody levels following natural exposure. The practical implementation of these methodological approaches could provide a way to efficiently apply ELISAs and other immune‐based assays to address questions in the growing fields of ecological immunology and disease ecology

    Thermogravimetric study of the behaviour of organic and inorganic polymers contained in four dental resin-based composites

    Get PDF
    The composition of dental resin-based composite (RBC) matrix is partly responsible for many clinical failures in restorations, which may come from dimensional variation or instability in a wet environment. The objective of this study is therefore to evaluate the thermal stability over time of four dental RBC with different matrices. Silicone cylinders were filled with four different materials and then photopolymerized. To simulate ageing in the buccal environment, half of the samples were placed in a dark place at 37°C for 45 days in sealed compartments containing 2 ml of water. All the RBC produced were subjected to thermogravimetric analysis to measure the loss of mass as a function of temperature. Bis-GMA-based resins and Ormocer materials have similar curves before and after soaking in humid atmosphere. The curves of the UDMA resin are different before and after water ageing, meaning that water imbibition has modified the structure of the composite and its degradation. Even if many curves are similar within the same RBC at different polymerization times or at different pre- and post-ageing times, it is rare to observe a common kinetics between two different composites. Our results show good wet stability of polymerized dental RBC according to the manufacturer’s instructions, although the UDMA-based materials show more variation. It therefore seems that Ormocer resin composite with mass placement have ageing properties that can compete with those of conventional composites whereas those incremented on 2 mm layers are more sensitive to the time necessary for polymerization

    Feeding immunity: Physiological and Behavioral responses to infection and resource limitation

    Get PDF
    Resources are a core currency of species interactions and ecology in general (e.g., think of food webs or competition). Within parasite-infected hosts, resources are divided among the competing demands of host immunity and growth as well as parasite reproduction and growth. Effects of resources on immune responses are increasingly understood at the cellular level (e.g., metabolic predictors of effector function), but there has been limited consideration of how these effects scale up to affect individual energetic regimes (e.g., allocation trade-offs), susceptibility to infection, and feeding behavior (e.g., responses to local resource quality and quantity). We experimentally rewilded laboratory mice (strain C57BL/6) in semi-natural enclosures to investigate the effects of dietary protein and gastrointestinal nematode (Trichuris muris) infection on individual-level immunity, activity, and behavior. The scale and realism of this field experiment, as well as the multiple physiological assays developed for laboratory mice, enabled us to detect costs, trade-offs, and potential compensatory mechanisms that mice employ to battle infection under different resource conditions. We found that mice on a low-protein diet spent more time feeding, which led to higher body fat stores (i.e., concentration of a satiety hormone, leptin) and altered metabolite profiles, but which did not fully compensate for the effects of poor nutrition on albumin or immune defenses. Specifically, immune defenses measured as interleukin 13 (IL13) (a primary cytokine coordinating defense against T. muris) and as T. muris-specific IgG1 titers were lower in mice on the low-protein diet. However, these reduced defenses did not result in higher worm counts in mice with poorer diets. The lab mice, living outside for the first time in thousands of generations, also consumed at least 26 wild plant species occurring in the enclosures, and DNA metabarcoding revealed that the consumption of different wild foods may be associated with differences in leptin concentrations. When individual foraging behavior was accounted for, worm infection significantly reduced rates of host weight gain. Housing laboratory mice in outdoor enclosures provided new insights into the resource costs of immune defense to helminth infection and how hosts modify their behavior to compensate for those costs

    Feeding immunity: Physiological and Behavioral responses to infection and resource limitation

    Get PDF
    Resources are a core currency of species interactions and ecology in general (e.g., think of food webs or competition). Within parasite-infected hosts, resources are divided among the competing demands of host immunity and growth as well as parasite reproduction and growth. Effects of resources on immune responses are increasingly understood at the cellular level (e.g., metabolic predictors of effector function), but there has been limited consideration of how these effects scale up to affect individual energetic regimes (e.g., allocation trade-offs), susceptibility to infection, and feeding behavior (e.g., responses to local resource quality and quantity). We experimentally rewilded laboratory mice (strain C57BL/6) in semi-natural enclosures to investigate the effects of dietary protein and gastrointestinal nematode (Trichuris muris) infection on individual-level immunity, activity, and behavior. The scale and realism of this field experiment, as well as the multiple physiological assays developed for laboratory mice, enabled us to detect costs, trade-offs, and potential compensatory mechanisms that mice employ to battle infection under different resource conditions. We found that mice on a low-protein diet spent more time feeding, which led to higher body fat stores (i.e., concentration of a satiety hormone, leptin) and altered metabolite profiles, but which did not fully compensate for the effects of poor nutrition on albumin or immune defenses. Specifically, immune defenses measured as interleukin 13 (IL13) (a primary cytokine coordinating defense against T. muris) and as T. muris-specific IgG1 titers were lower in mice on the low-protein diet. However, these reduced defenses did not result in higher worm counts in mice with poorer diets. The lab mice, living outside for the first time in thousands of generations, also consumed at least 26 wild plant species occurring in the enclosures, and DNA metabarcoding revealed that the consumption of different wild foods may be associated with differences in leptin concentrations. When individual foraging behavior was accounted for, worm infection significantly reduced rates of host weight gain. Housing laboratory mice in outdoor enclosures provided new insights into the resource costs of immune defense to helminth infection and how hosts modify their behavior to compensate for those costs

    Quantifying the Amount of Ice in Cold Tropical Cirrus Clouds

    Get PDF
    How much ice is there in the Tropical Tropopause layer, globally? How does one begin to answer that question? Clouds are currently the largest source of uncertainty in climate models, and the ice water content (IWC) of cold cirrus clouds is needed to understand the total water and radiation budgets of the upper troposphere and lower stratosphere (UT/LS). The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, originally a "pathfinder" mission only expected to last for three years, has now been operational for more than eight years. Lidar data from CALIPSO can provide information about how IWC is vertically distributed in the UT/LS, and about inter-annual variability and seasonal changes in cloud ice. However, cloud IWC is difficult to measure accurately with either remote or in situ instruments because IWC from cold cirrus clouds is derived from the particle cross-sectional area or visible extinction coefficient. Assumptions must be made about the relationship between the area, volume and density of ice particles with various crystal habits. Recently there have been numerous aircraft field campaigns providing detailed information about cirrus ice water content from cloud probes. This presentation evaluates the assumptions made when creating the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) global IWC data set, using recently reanalyzed aircraft particle probe measurements of very cold, thin TTL cirrus from the 2006 CR-AVE
    • 

    corecore