1,859 research outputs found

    Testing a non-destructive assay to track Plasmodium sporozoites in mosquitoes over time

    Get PDF
    Abstract Background The extrinsic incubation period (EIP), defined as the time it takes for malaria parasites in a mosquito to become infectious to a vertebrate host, is one of the most influential parameters for malaria transmission but remains poorly understood. The EIP is usually estimated by quantifying salivary gland sporozoites in subsets of mosquitoes, which requires terminal sampling. However, assays that allow repeated sampling of individual mosquitoes over time could provide better resolution of the EIP. Methods We tested a non-destructive assay to quantify sporozoites of two rodent malaria species, Plasmodium chabaudi and Plasmodium berghei, expelled throughout 24-h windows, from sugar-soaked feeding substrates using quantitative-PCR. Results The assay is able to quantify sporozoites from sugar-soaked feeding substrates, but the prevalence of parasite-positive substrates was low. Various methods were attempted to increase the detection of expelled parasites (e.g. running additional technical replicates; using groups rather than individual mosquitoes), but these did not increase the detection rate, suggesting that expulsion of sporozoites is variable and infrequent. Conclusions We reveal successful detection of expelled sporozoites from sugar-soaked feeding substrates. However, investigations of the biological causes underlying the low detection rate of sporozoites (e.g. mosquito feeding behaviour, frequency of sporozoite expulsion or sporozoite clumping) are needed to maximise the utility of using non-destructive assays to quantify sporozoite dynamics. Increasing detection rates will facilitate the detailed investigation on infection dynamics within mosquitoes, which is necessary to explain the highly variable EIP of Plasmodium and to improve understanding of malaria transmission dynamics. Graphical Abstrac

    Daily rhythms of both host and parasite affect antimalarial drug efficacy

    Get PDF
    BACKGROUND AND OBJECTIVES: Circadian rhythms contribute to treatment efficacy in several non-communicable diseases. However, chronotherapy (administering drugs at a particular time-of-day) against infectious diseases has been overlooked. Yet, the daily rhythms of both hosts and disease-causing agents can impact the efficacy of drug treatment. We use the rodent malaria parasite Plasmodium chabaudi, to test whether the daily rhythms of hosts, parasites and their interactions affect sensitivity to the key antimalarial, artemisinin. METHODOLOGY: Asexual malaria parasites develop rhythmically in the host’s blood, in a manner timed to coordinate with host daily rhythms. Our experiments coupled or decoupled the timing of parasite and host rhythms, and we administered artemisinin at different times of day to coincide with when parasites were either at an early (ring) or later (trophozoite) developmental stage. We quantified the impacts of parasite developmental stage, and alignment of parasite and host rhythms, on drug sensitivity. RESULTS: We find that rings were less sensitive to artemisinin than trophozoites, and this difference was exacerbated when parasite and host rhythms were misaligned, with little direct contribution of host time-of-day on its own. Furthermore, the blood concentration of haem at the point of treatment correlated positively with artemisinin efficacy but only when parasite and host rhythms were aligned. CONCLUSIONS AND IMPLICATIONS: Parasite rhythms influence drug sensitivity in vivo. The hitherto unknown modulation by alignment between parasite and host daily rhythms suggests that disrupting the timing of parasite development could be a novel chronotherapeutic approach. LAY SUMMARY: We reveal that chronotherapy (providing medicines at a particular time-of-day) could improve treatment for malaria infections. Specifically, parasites’ developmental stage at the time of treatment and the coordination of timing between parasite and host both affect how well antimalarial drug treatment works

    Carers for older people with co-morbid cognitive impairment in general hospital: characteristics and psychological well-being

    Get PDF
    OBJECTIVE: This analysis sought to describe the characteristics and well-being of carers of older people with mental health problems admitted to a general hospital. METHODS: General medical and trauma orthopaedic patients aged 70 years or older admitted to an acute general teaching hospital were screened for mental health problems. Those screened positive, together with a carer, were invited to undergo further assessment with a battery of health status measurements. Carers were interviewed to ascertain strain (caregiver strain index (CSI)), psychological distress (12-item General Health Questionnaire) and quality of life (EQ-5D). RESULTS: We recruited 250 patients to the study, of whom 180 were cognitively impaired and had carers willing to take part. After 6 months, 57 patients (32%) had died, and we followed up 100 carers. Carers' own health, in terms of mobility, usual activities, and anxiety, was poor in a third of cases. At the time of admission, high carer strain was common (42% with CSI ≄ 7), particularly among co-resident carers (55%). High levels of behavioural and psychiatric symptoms at baseline were associated with more carer strain and distress. At follow-up, carer strain and distress had reduced only slightly, with no difference in outcomes for carers of patients who moved from the community to a care home. CONCLUSION: Hospital staff should be alert to sources of carer strain and offer carers practical advice and emotional support. Interventions are required to prevent and manage behavioural and psychiatric symptoms at the time of acute physical illness or to alleviate their effects on carers

    Stress, drugs and the evolution of reproductive restraint in malaria parasites

    Get PDF
    Life-history theory predicts that sexually reproducing organisms have evolved to resolve resource-allocation trade-offs between growth/survival versus reproduction, and current versus future reproduction. Malaria parasites replicate asexually in their vertebrate hosts, but must reproduce sexually to infect vectors and be transmitted to new hosts. As different specialized stages are required for these functions, the division of resources between these life-history components is a fundamental evolutionary problem. Here, we test how drug-sensitive and drug-resistant isolates of the human malaria parasite Plasmodium falciparum resolve the trade-off between in-host replication and between-host transmission when exposed to treatment with anti-malarial drugs. Previous studies have shown that parasites increase their investment in sexual stages when exposed to stressful conditions, such as drugs. However, we demonstrate that sensitive parasites facultatively decrease their investment in sexual stages when exposed to drugs. In contrast to previous studies, we tested parasites from a region where treatment with anti-malarial drugs is common and transmission is seasonal. We hypothesize that when exposed to drugs, parasites invest in their survival and future transmission by diverting resources from reproduction to replication. Furthermore, as drug-resistant parasites did not adjust their investment when exposed to drugs, we suggest that parasites respond to changes in their proliferation (state) rather the presence of drugs

    Organizational boundaries of medical practice: the case of physician ownership of ancillary services

    Get PDF
    Physician ownership of in-office ancillary services (IOASs) has come under increasing scrutiny. Advocates of argue that IOASs allow physicians to supervise the quality and coordination of care. Critics have argued that IOASs create financial incentives for physicians to increase ancillary service volume. In this paper we develop a conceptual framework to evaluate the tradeoffs associated with physician ownership of IOASs. There is some evidence supporting the existence of scope and transaction economies in IOASs. Improvement in flow and continuity of care are likely to generate scope economies and improvements in quality monitoring and reductions in consumer transaction costs are likely to generate transaction economies. Other factors include the capture of upstream and downstream profits, but these incentives are likely to be small compared to scope and transaction economies. Policy debates on the merits of IOASs should include an explicit assessment of these tradeoffs. This research was supported in part by funding from the American Association of Orthopaedic Surgeons (AAOS)

    Circadian rhythmicity in murine blood:Electrical effects of malaria infection and anemia

    Get PDF
    Circadian rhythms are biological adaptations to the day-night cycle, whereby cells adapt to changes in the external environment or internal physiology according to the time of day. Whilst many cellular clock mechanisms involve gene expression feedback mechanisms, clocks operate even where gene expression is absent. For example, red blood cells (RBCs) do not have capacity for gene expression, and instead possess an electrophysiological oscillator where cytosolic potassium plays a key role in timekeeping. We examined murine blood under normal conditions as well as in two perturbed states, malaria infection and induced anemia, to assess changes in baseline cellular electrophysiology and its implications for the electrophysiological oscillator. Blood samples were analyzed at 4-h intervals over 2 days by dielectrophoresis, and microscopic determination of parasitemia. We found that cytoplasmic conductivity (indicating the concentration of free ions in the cytoplasm and related to the membrane potential) exhibited circadian rhythmic behavior in all three cases (control, malaria and anemia). Compared to control samples, cytoplasm conductivity was decreased in the anemia group, whilst malaria-infected samples were in antiphase to control. Furthermore, we identified rhythmic behavior in membrane capacitance of malaria infected cells that was not replicated in the other samples. Finally, we reveal the historically famous rhythmicity of malaria parasite replication is in phase with cytoplasm conductivity. Our findings suggest the electrophysiological oscillator can impact on malaria parasite replication and/or is vulnerable to perturbation by rhythmic parasite activities

    Susceptibility Provision Enhances Effective De-escalation (SPEED): utilizing rapid phenotypic susceptibility testing in Gram-negative bloodstream infections and its potential clinical impact

    Get PDF
    Abstract Objectives We evaluated the performance and time to result for pathogen identification (ID) and antimicrobial susceptibility testing (AST) of the Accelerate Phenoℱ system (AXDX) compared with standard of care (SOC) methods. We also assessed the hypothetical improvement in antibiotic utilization if AXDX had been implemented. Methods Clinical samples from patients with monomicrobial Gram-negative bacteraemia were tested and compared between AXDX and the SOC methods of the VERIGENE¼ and Bruker MALDI Biotyper¼ systems for ID and the VITEK¼ 2 system for AST. Additionally, charts were reviewed to calculate theoretical times to antibiotic de-escalation, escalation and active and optimal therapy Results ID mean time was 21 h for MALDI-TOF MS, 4.4 h for VERIGENE¼ and 3.7 h for AXDX. AST mean time was 35 h for VITEK¼ 2 and 9.0 h for AXDX. For ID, positive percentage agreement was 95.9% and negative percentage agreement was 99.9%. For AST, essential agreement was 94.5% and categorical agreement was 93.5%. If AXDX results had been available to inform patient care, 25% of patients could have been put on active therapy sooner, while 78% of patients who had therapy optimized during hospitalization could have had therapy optimized sooner. Additionally, AXDX could have reduced time to de-escalation (16 versus 31 h) and escalation (19 versus 31 h) compared with SOC. Conclusions By providing fast and reliable ID and AST results, AXDX has the potential to improve antimicrobial utilization and enhance antimicrobial stewardship

    Machine learning reveals singing rhythms of male Pacific field crickets are clock controlled

    Get PDF
    Circadian rhythms are ubiquitous in nature and endogenous circadian clocks drive the daily expression of many fitness-related behaviors. However, little is known about whether such traits are targets of selection imposed by natural enemies. In Hawaiian populations of the nocturnally active Pacific field cricket (Teleogryllus oceanicus), males sing to attract mates, yet sexually selected singing rhythms are also subject to natural selection from the acoustically orienting and deadly parasitoid fly, Ormia ochracea. Here, we use T. oceanicus to test whether singing rhythms are endogenous and scheduled by circadian clocks, making them possible targets of se lection imposed by flies. We also develop a novel audio-to-circadian analysis pipeline, capable of extracting useful parameters from which to train machine learning algorithms and process large quantities of audio data. Singing rhythms fulfilled all criteria for endogenous circadian clock control, including being driven by photoschedule, self-sustained periodicity of approximately 24 h, and being robust to variation in temperature. Furthermore, singing rhythms varied across individuals, which might suggest genetic variation on which natural and sexual selection pressures can act. Sexual signals and ornaments are well-known targets of selection by natural enemies, but our findings indicate that the circadian timing of those traits’ expression may also determine fitnes
    • 

    corecore