2,072 research outputs found

    Limits on Clouds and Hazes for the TRAPPIST-1 Planets

    Full text link
    The TRAPPIST-1 planetary system is an excellent candidate for study of the evolution and habitability of M-dwarf planets. Transmission spectroscopy observations performed with the Hubble Space Telescope (HST) suggest the innermost five planets do not possess clear hydrogen atmospheres. Here we reassess these conclusions with recently updated mass constraints and expand the analysis to include limits on metallicity, cloud top pressure, and the strength of haze scattering. We connect recent laboratory results of particle size and production rate for exoplanet hazes to a one-dimensional atmospheric model for TRAPPIST-1 transmission spectra. Doing so, we obtain a physically-based estimate of haze scattering cross sections. We find haze scattering cross sections on the order of 1e-26 to 1e-19 cm squared are needed in hydrogen-rich atmospheres for TRAPPIST-1 d, e, and f to match the HST data. For TRAPPIST-1 g, we cannot rule out a clear hydrogen-rich atmosphere. We also modeled the effects an opaque cloud deck and substantial heavy element content have on the transmission spectra. We determine that hydrogen-rich atmospheres with high altitude clouds, at pressures of 12mbar and lower, are consistent with the HST observations for TRAPPIST-1 d and e. For TRAPPIST-1 f and g, we cannot rule out clear hydrogen-rich cases to high confidence. We demonstrate that metallicities of at least 60xsolar with tropospheric (0.1 bar) clouds agree with observations. Additionally, we provide estimates of the precision necessary for future observations to disentangle degeneracies in cloud top pressure and metallicity. Our results suggest secondary, volatile-rich atmospheres for the outer TRAPPIST-1 planets d, e, and f.Comment: 15 pages, 3 figures, 2 tables, accepted in the Astronomical Journa

    In Search of Clearer Skies? Linking Planetary Aerosols from the Laboratory to Models

    Get PDF
    In this dissertation, I integrate atmospheric modeling and laboratory characterization of clouds and hazes for temperate sub-Neptune exoplanets and Neptune’s moon, Triton. I draw on advances in laboratory atmospheric experiments for the Solar System and in modeling for exoplanets, where previously a gap existed between the two. My work continues this laboratory characterization of exoplanet and Triton-like hazes, then ties this information to modeling of diverse worlds. These data are amenable for comparison to observations of exoplanet atmospheres in transmission and reflected light, as well as from potential future missions to the outer Solar System. The first chapter puts upper limits on the cloud and haze contents of the TRAPPIST-1 planets. Transmission spectroscopy performed with Hubble (HST) suggests these planets do not possess clear hydrogen atmospheres. I reassess this conclusion with updated masses and expand the analysis to include metallicity, cloud top pressure, and haze scattering. I connect laboratory results of particle size and production rate for exoplanet hazes to a one-dimensional atmospheric model, obtaining a physically-based estimate of haze scattering cross sections. I find larger haze scattering cross sections than supported by laboratory measurements are needed in H2-rich atmospheres for TRAPPIST-1 d, e, and f to match the HST data. By modeling a cloud deck and high metallicity atmospheres, I also determine that either H2-rich atmospheres with high altitude clouds (<12mbar) or that metallicities of at least 60x solar with tropospheric (0.1 bar) clouds are required to match HST data. My results therefore suggest secondary atmospheres for the TRAPPIST-1 planets. The second chapter delves specifically into the chemistry of the laboratory-made exoplanet hazes themselves. I use very high resolution mass spectrometry to measure the chemical components of solid particles produced in atmospheric chamber experiments for exoplanet atmospheres with hydrogen-, water-, and carbon dioxide-rich atmospheres at 300, 400, and 600 K. I detect many complex molecular species with general chemical formulas CwHxOyNz, including oxygen ratios of up to 20%, an order of magnitude greater than that assumed in typical exoplanet haze models. I also find molecular formulas of prebiotic interest in the data, including those for a variety of amino acids, nucleotide bases, and several sugar derivatives. Additionally, the exoplanetary haze analogues exhibit diverse solubilities, which provides insight into their further alteration and evolution in exoplanetary atmospheres. The final portion of this thesis centers on the physicochemical properties of laboratory hazes produced for a Triton-like atmosphere. Triton conditions have commonalities to the best characterized Titan tholin, yet include larger amounts of carbon monoxide, allowing for a deeper examination of the role of oxygen-bearing molecules on haze properties. Using Fourier Transform Infrared Spectroscopy, I measure the spectra of the analog hazes and measure their composition with high resolution mass spectrometry. When carbon monoxide dominates over methane in the initial gas mixture, oxygen content of the solid particles greatly increases, with observable effects in the near-infrared spectra of the material. These Triton results emphasize the importance of understanding trace species in the pathway to haze formation, particularly regarding the role of carbon-carrier and oxygen-carrier species

    Aging into Perceptual Control: A Dynamic Causal Modeling for fMRI Study of Bistable Perception

    Get PDF
    Aging is accompanied by stereotyped changes in functional brain activations, for example a cortical shift in activity patterns from posterior to anterior regions is one hallmark revealed by functional magnetic resonance imaging (fMRI) of aging cognition. Whether these neuronal effects of aging could potentially contribute to an amelioration of or resistance to the cognitive symptoms associated with psychopathology remains to be explored. We used a visual illusion paradigm to address whether aging affects the cortical control of perceptual beliefs and biases. Our aim was to understand the effective connectivity associated with volitional control of ambiguous visual stimuli and to test whether greater top-down control of early visual networks emerged with advancing age. Using a bias training paradigm for ambiguous images we found that older participants (n = 16) resisted experimenter-induced visual bias compared to a younger cohort (n = 14) and that this resistance was associated with greater activity in prefrontal and temporal cortices. By applying Dynamic Causal Models for fMRI we uncovered a selective recruitment of top-down connections from the middle temporal to lingual gyrus by the older cohort during the perceptual switch decision following bias training. In contrast, our younger cohort did not exhibit any consistent connectivity effects but instead showed a loss of driving inputs to orbitofrontal sources following training. These findings suggest that perceptual beliefs are more readily controlled by top-down strategies in older adults and introduce age-dependent neural mechanisms that may be important for understanding aberrant belief states associated with psychopathology

    Cortisol patterns are associated with T cell activation in HIV.

    Get PDF
    ObjectiveThe level of T cell activation in untreated HIV disease is strongly and independently associated with risk of immunologic and clinical progression. The factors that influence the level of activation, however, are not fully defined. Since endogenous glucocorticoids are important in regulating inflammation, we sought to determine whether less optimal diurnal cortisol patterns are associated with greater T cell activation.MethodsWe studied 128 HIV-infected adults who were not on treatment and had a CD4(+) T cell count above 250 cells/µl. We assessed T cell activation by CD38 expression using flow cytometry, and diurnal cortisol was assessed with salivary measurements.ResultsLower waking cortisol levels correlated with greater T cell immune activation, measured by CD38 mean fluorescent intensity, on CD4(+) T cells (r = -0.26, p = 0.006). Participants with lower waking cortisol also showed a trend toward greater activation on CD8(+) T cells (r = -0.17, p = 0.08). A greater diurnal decline in cortisol, usually considered a healthy pattern, correlated with less CD4(+) (r = 0.24, p = 0.018) and CD8(+) (r = 0.24, p = 0.017) activation.ConclusionsThese data suggest that the hypothalamic-pituitary-adrenal (HPA) axis contributes to the regulation of T cell activation in HIV. This may represent an important pathway through which psychological states and the HPA axis influence progression of HIV

    Optical Properties of Organic Haze Analogues in Water-rich Exoplanet Atmospheres Observable with JWST

    Full text link
    JWST has begun its scientific mission, which includes the atmospheric characterization of transiting exoplanets. Some of the first exoplanets to be observed by JWST have equilibrium temperatures below 1000 K, which is a regime where photochemical hazes are expected to form. The optical properties of these hazes, which controls how they interact with light, are critical for interpreting exoplanet observations, but relevant experimental data are not available. Here we measure the density and optical properties of organic haze analogues generated in water-rich exoplanet atmosphere experiments. We report optical constants (0.4 to 28.6 {\mu}m) of organic haze analogues for current and future observational and modeling efforts covering the entire wavelength range of JWST instrumentation and a large part of Hubble. We use these optical constants to generate hazy model atmospheric spectra. The synthetic spectra show that differences in haze optical constants have a detectable effect on the spectra, impacting our interpretation of exoplanet observations. This study emphasizes the need to investigate the optical properties of hazes formed in different exoplanet atmospheres, and establishes a practical procedure to determine such properties.Comment: 4 figures, 1 Table, Published in Nature Astronom

    Infrastructural Speculations: Tactics for Designing and Interrogating Lifeworlds

    Get PDF
    This paper introduces “infrastructural speculations,” an orientation toward speculative design that considers the complex and long-lived relationships of technologies with broader systems, beyond moments of immediate invention and design. As modes of speculation are increasingly used to interrogate questions of broad societal concern, it is pertinent to develop an orientation that foregrounds the “lifeworld” of artifacts—the social, perceptual, and political environment in which they exist. While speculative designs often imply a lifeworld, infrastructural speculations place lifeworlds at the center of design concern, calling attention to the cultural, regulatory, environmental, and repair conditions that enable and surround particular future visions. By articulating connections and affinities between speculative design and infrastructure studies research, we contribute a set of design tactics for producing infrastructural speculations. These tactics help design researchers interrogate the complex and ongoing entanglements among technologies, institutions, practices, and systems of power when gauging the stakes of alternate lifeworlds
    • …
    corecore