34 research outputs found

    Identification of Pre-symptomatic Gene Signatures That Predict Resilience to Cognitive Decline in the Genetically Diverse AD-BXD Model

    Get PDF
    Across the population, individuals exhibit a wide variation of susceptibility or resilience to developing Alzheimer’s disease (AD). Identifying specific factors that promote resilience would provide insight into disease mechanisms and nominate potential targets for therapeutic intervention. Here, we use transcriptome profiling to identify gene networks present in the pre-symptomatic AD mouse brain relating to neuroinflammation, brain vasculature, extracellular matrix organization, and synaptic signaling that predict cognitive performance at an advanced age. We highlight putative drivers of these observed relationships, including Itgb2, Fcgr2b, Slc6a14, and Gper1, which represent prime targets through which to promote resilience prior to overt symptom onset. In addition, we identify a genomic region on chromosome 2 containing variants that directly modulate resilience network expression. Overall, work here highlights new potential drivers of resilience to AD and contributes significantly to our understanding of early, potentially causal, disease mechanisms

    Identifying the molecular systems that influence cognitive resilience to Alzheimer\u27s disease in genetically diverse mice.

    Get PDF
    Individual differences in cognitive decline during normal aging and Alzheimer\u27s disease (AD) are common, but the molecular mechanisms underlying these distinct outcomes are not fully understood. We utilized a combination of genetic, molecular, and behavioral data from a mouse population designed to model human variation in cognitive outcomes to search for the molecular mechanisms behind this population-wide variation. Specifically, we used a systems genetics approach to relate gene expression to cognitive outcomes during AD and normal aging. Statistical causal-inference Bayesian modeling was used to model systematic genetic perturbations matched with cognitive data that identified astrocyte and microglia molecular networks as drivers of cognitive resilience to AD. Using genetic mapping, we identifie

    Peripheral blood leukocyte response and macrophage function during Eimeria adenoeides infection in turkey poults

    Get PDF
    Intestinal coccidiosis, caused by various species of Eimeria, is an economically important disease of chickens and turkeys. The peripheral blood leukocyte response and macrophage functions during a coccidial infection in turkeys have not been defined. To examine these aspects of innate immunity during primary Eimeria infection in turkeys, 4-week-old poults were orally inoculated with either 50,000 E. adenoeides oocyst (24 infected poults) or water (24 control poults). To monitor the concentrations and proportions of white blood cells (WBC) throughout the course of infection, heparinized blood was collected from 12 infected and 12 control poults prior to inoculation (day 0), and on days 4, 7, and 11 post-inoculation (PI). To study macrophage function, Sephadex-elicited abdominal exudate cells (macrophages) were collected on day 7 PI from 12 infected and 12 control poults. Macrophages were used to study phagocytosis of unopsonized and antibody-opsonized sheep red blood cells (SRBC), production of nitric oxide, and production of cytotoxic factors. E. adenoeides infection was associated with alterations in the concentration of WBC, including a decrease in the numbers of circulating lymphocytes on day 4 and a rise in lymphocytes and heterophils on day 11. Although phagocytic activity was not different in macrophages from infected and control poults, macrophages from infected poults exhibited greater cytotoxic activity. Data from these studies strongly suggest that components of innate immunity were recruited and activated during this primary infection of turkey poults with E. adenoeides. Further investigations are needed to determine the role of these components in limiting primary infection by E. adenoeides

    Altered expression of genes controlling metabolism characterizes the tissue response to immune injury in lupus.

    Get PDF
    To compare lupus pathogenesis in disparate tissues, we analyzed gene expression profiles of human discoid lupus erythematosus (DLE) and lupus nephritis (LN). We found common increases in myeloid cell-defining gene sets and decreases in genes controlling glucose and lipid metabolism in lupus-affected skin and kidney. Regression models in DLE indicated increased glycolysis was correlated with keratinocyte, endothelial, and inflammatory cell transcripts, and decreased tricarboxylic (TCA) cycle genes were correlated with the keratinocyte signature. In LN, regression models demonstrated decreased glycolysis and TCA cycle genes were correlated with increased endothelial or decreased kidney cell transcripts, respectively. Less severe glomerular LN exhibited similar alterations in metabolism and tissue cell transcripts before monocyte/myeloid cell infiltration in some patients. Additionally, changes to mitochondrial and peroxisomal transcripts were associated with specific cells rather than global signal changes. Examination of murine LN gene expression demonstrated metabolic changes were not driven by acute exposure to type I interferon and could be restored after immunosuppression. Finally, expression of HAVCR1, a tubule damage marker, was negatively correlated with the TCA cycle signature in LN models. These results indicate that altered metabolic dysfunction is a common, reversible change in lupus-affected tissues and appears to reflect damage downstream of immunologic processes

    Nucleic Acid-Sensing and Interferon-Inducible Pathways Show Differential Methylation in MZ Twins Discordant for Lupus and Overexpression in Independent Lupus Samples: Implications for Pathogenic Mechanism and Drug Targeting.

    Get PDF
    Systemic lupus erythematosus (SLE) is a chronic, multisystem, autoimmune inflammatory disease with genomic and non-genomic contributions to risk. We hypothesize that epigenetic factors are a significant contributor to SLE risk and may be informative for identifying pathogenic mechanisms and therapeutic targets. To test this hypothesis while controlling for genetic background, we performed an epigenome-wide analysis of DNA methylation in genomic DNA from whole blood in three pairs of female monozygotic (MZ) twins of European ancestry, discordant for SLE. Results were replicated on the same array in four cell types from a set of four Danish female MZ twin pairs discordant for SLE. Genes implicated by the epigenetic analyses were then evaluated in 10 independent SLE gene expression datasets from the Gene Expression Omnibus (GEO). There were 59 differentially methylated loci between unaffected and affected MZ twins in whole blood, including 11 novel loci. All but two of these loci were hypomethylated in the SLE twins relative to the unaffected twins. The genes harboring these hypomethylated loci exhibited increased expression in multiple independent datasets of SLE patients. This pattern was largely consistent regardless of disease activity, cell type, or renal tissue type. The genes proximal to CpGs exhibiting differential methylation (DM) in the SLE-discordant MZ twins and exhibiting differential expression (DE) in independent SLE GEO cohorts (DM-DE genes) clustered into two pathways: the nucleic acid-sensing pathway and the type I interferon pathway. The DM-DE genes were also informatically queried for potential gene-drug interactions, yielding a list of 41 drugs including a known SLE therapy. The DM-DE genes delineate two important biologic pathways that are not only reflective of the heterogeneity of SLE but may also correlate with distinct IFN responses that depend on the source, type, and location of nucleic acid molecules and the activated receptors in individual patients. Cell- and tissue-specific analyses will be critical to the understanding of genetic factors dysregulating the nucleic acid-sensing and IFN pathways and whether these factors could be appropriate targets for therapeutic intervention

    The Prevalence of Campylobacter amongst a Free-Range Broiler Breeder Flock Was Primarily Affected by Flock Age

    Get PDF
    Campylobacter successfully colonizes broiler chickens, but little is known about the longer term natural history of colonization, since most flocks are slaughtered at an immature age. In this study, the prevalence and genetic diversity of Campylobacter colonizing a single free-range broiler breeder flock was investigated over the course of a year. The age of the flock was the most important factor in determining both the prevalence and diversity of Campylobacter over time. There was no correlation with season, temperature, the amount of rain and sunshine, or the dynamics of colonization amongst geographically and temporally matched broiler flocks. The higher prevalence rates coincided with the age at which broiler chickens are typically slaughtered, but then in the absence of bio-security or other intervention methods, and despite changes in flock management, the prevalence fell to significantly lower levels for the remainder of the study. The genetic diversity of Campylobacter increased as the flock aged, implying that genotypes were accumulated within the flock and may persist for a long time. A better understanding of the ecology of Campylobacter within commercial chicken flocks will allow the design of more effective farm-based interventions

    Identification of Pre-symptomatic Gene Signatures That Predict Resilience to Cognitive Decline in the Genetically Diverse AD-BXD Model.

    Get PDF
    Across the population, individuals exhibit a wide variation of susceptibility or resilience to developing Alzheimer\u27s disease (AD). Identifying specific factors that promote resilience would provide insight into disease mechanisms and nominate potential targets for therapeutic intervention. Here, we use transcriptome profiling to identify gene networks present in the pre-symptomatic AD mouse brain relating to neuroinflammation, brain vasculature, extracellular matrix organization, and synaptic signaling that predict cognitive performance at an advanced age. We highlight putative drivers of these observed relationships, includin

    Harnessing Genetic Complexity to Enhance Translatability of Alzheimer\u27s Disease Mouse Models: A Path toward Precision Medicine.

    No full text
    An individual\u27s genetic makeup plays a large role in determining susceptibility to Alzheimer\u27s disease (AD) but has largely been ignored in preclinical studies. To test the hypothesis that incorporating genetic diversity into mouse models of AD would improve translational potential, we combined a well-established mouse model of AD with a genetically diverse reference panel to generate mice that harbor identical high-risk human mutations but differ across the remainder of their genome. We first show that genetic variation profoundly modifies the impact of human AD mutations on both cognitive and pathological phenotypes. We then validate this complex AD model by demonstrating high degrees of genetic, transcriptomic, and phenotypic overlap with human AD. Overall, work here both introduces a novel AD mouse population as an innovative and reproducible resource for the study of mechanisms underlying AD and provides evidence that preclinical models incorporating genetic diversity may better translate to human disease
    corecore